Bioeconomia circular e recursos renováveis de base biológica: alternativas para a cafeicultura brasileira

Autores

DOI:

https://doi.org/10.22481/ccsa.v21i38.15705

Palavras-chave:

Brasil, Cafeicultura, Economia Circular, Bioeconomia, Meio ambiente

Resumo

Biorrecursos, bioprocessos e bioprodutos são conceitos relacionados à sinergia das agendas da Economia Circular e da Bioeconomia, abordagens que oferecem uma estratégia interdisciplinar voltada ao uso de recursos de fontes renováveis e à redução do desperdício e geração de resíduos por meio de inovações de base biológica. Considerando a vasta literatura especializada sobre o potencial de produção e (re)utilização de biomassa a partir de produtos de base biológica, este estudo objetiva estimar o volume de biomassa e resíduos gerados pela cafeicultura brasileira e discutir o potencial de aplicações desses materiais de base biológica segundo os princípios da Bioeconomia Circular. Para isso, foi realizada uma revisão integrativa da literatura para identificar parâmetros e coeficientes em estudos técnico-científicos especializados, possibilitando o cálculo de estimativas dos volumes de biomassa e resíduos para o setor, bem como para apresentar e discutir as alternativas de (re)aproveitamento destes recursos. Os resultados demonstraram a diversidade de possibilidades de geração de novos bioprodutos e biorrecursos a partir do processamento de biomassa e reciclagem de resíduos da cafeicultura, na perspectiva de minimização de impactos ambientais associados à essa atividade produtiva.

Downloads

Não há dados estatísticos.

Biografia do Autor

Maíra Ferraz de Oliveira Silva, Southwest Bahia State University

Doutora em Desenvolvimento e Meio Ambiente pela Universidade Estadual de Santa Cruz (PRODEMA/UESC). Professora Adjunta da Área de Economia do Departamento de Ciências Sociais
Aplicadas da Universidade Estadual do Sudoeste da Bahia (UESB).

Fábio Lúcio Martins Neto, Universidade Federal de Viçosa

 Doutor em Fitotecnia – Produção Vegetal pela Universidade Federal de Viçosa (UFV). Consultor associado do Agrobiota.

Referências

ACCHAR, W.; DULTRA, E. J. V. Thermal analysis and X-ray diffraction of untreated coffee’s

husk ash reject and its potential use in ceramics. Journal of Thermal Analysis and

Calorimetry, v. 111, n. 2, p. 1331–1334, 2013.

ALEMAYEHU, Y. A.; ASFAW, S. L.; TERFIE, T. A. Reusing urine and coffee processing

wastewater as a nutrient source: Effect on soil characteristics at optimum cabbage yield.

Environmental Technology & Innovation, v. 23, p. 101571, 1 ago. 2021.

ALVAREZ, N. M. M. et al. Evaluation of mercury (Hg2+) adsorption capacity using exhausted

coffee waste. Sustainable Chemistry and Pharmacy, v. 10, p. 60–70, 1 dez. 2018.

ALVES, R. C. et al. State of the art in coffee processing by-products. Handbook of Coffee

Processing By-Products: Sustainable Applications, p. 1–26, 1 jan. 2017.

ANTAR, M. et al. Biomass for a sustainable bioeconomy: An overview of world biomass

production and utilization. Renewable and Sustainable Energy Reviews, v. 139, p. 110691, 1

abr. 2021.

BARBERO-LÓPEZ, A. et al. Revalorization of coffee silverskin as a potential feedstock for

antifungal chemicals in wood preservation. International Biodeterioration & Biodegradation,

v. 152, p. 105011, 1 ago. 2020.

BARBOSA, M. DE O. et al. Bioeconomia: Um novo caminho para a sustentabilidade na

Amazônia? Research, Society and Development, v. 10, n. 10, p. 41101018545, 5 ago. 2021.

BEFORT, Nicolas. The bioeconomy: institutions, innovation and sustainability. Routledge, 2023.

BLINOVÁ, L. et al. Utilization of Waste From Coffee Production. Research Papers Faculty of

Materials Science and Technology Slovak University of Technology, v. 25, n. 40, p. 91–101,

jun. 2017.

BRANDÃO, A. S.; GONÇALVES, A.; SANTOS, J. M. R. C. A. Circular bioeconomy strategies:

From scientific research to commercially viable products. Journal of Cleaner Production, v.

, p. 126407, 1 maio 2021.

CAMPOS, R. C. et al. New sustainable perspectives for “Coffee Wastewater” and other byproducts: A critical review. Future Foods, v. 4, p. 100058, 1 dez. 2021.

CHO, D. W. et al. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis

of FeCl3-pretreated spent coffee ground. Environmental Pollution, v. 229, p. 942–949, 1 out.

a.

CHO, Y. H. et al. Potential effect of compounds isolated from Coffea arabica against UV-B

induced skin damage by protecting fibroblast cells. Journal of Photochemistry and

Photobiology B: Biology, v. 174, p. 323–332, 1 set. 2017b.

CHOI, H. S. et al. Topical application of spent coffee ground extracts protects skin from

ultraviolet B-induced photoaging in hairless mice. Photochemical and Photobiological

Sciences, v. 15, n. 6, p. 779–790, 1 jun. 2016.

CONTERATTO, C. et al. Biorefinery: A comprehensive concept for the sociotechnical

transition toward bioeconomy. Renewable and Sustainable Energy Reviews, v. 151, p.

, 1 nov. 2021.

D’AMATO, D.; KORHONEN, J. Integrating the green economy, circular economy and

bioeconomy in a strategic sustainability framework. Ecological Economics, v. 188, p. 107143,

DÁVILA-GUZMÁN, N. E. et al. Copper Biosorption by Spent Coffee Ground: Equilibrium,

Kinetics, and Mechanism. CLEAN – Soil, Air, Water, v. 41, n. 6, p. 557–564, 1 jun. 2013.

COSTA, F. D. A. et al. Bioeconomia da sociobiodiversidade no estado do Pará. Brasília,

DF: The Nature Conservancy (TNC Brasil), Banco Interamericano de Desenvolvimento (BID),

Natura, 2021.

CRUZ, R. COFFEE BY-PRODUCTS Sustainable Agro-Industrial Recovery and Impact

on Vegetables Quality. Dissertação de Mestrado—Porto, Portugal: Universidade do Porto, set.

DE ALMEIDA-COUTO, J. M. F. et al. Oil recovery from defective coffee beans using

pressurized fluid extraction followed by pyrolysis of the residual biomass: Sustainable process

with zero waste. The Journal of Supercritical Fluids, v. 180, p. 105432, 1 fev. 2022.

DEL POZO, C. et al. Converting coffee silverskin to value-added products by a slow pyrolysisbased biorefinery process. Fuel Processing Technology, v. 214, p. 106708, 1 abr. 2021.

ECHEVERRIA, M. C.; NUTI, M. Valorisation of the Residues of Coffee Agro-industry:

Perspectives and Limitations. The Open Waste Management Journal, v. 10, n. 1, p. 13–22, 2017.

FERREIRA, V. et al. Research trends and hotspots in bioeconomy impact analysis: a study of

economic, social and environmental impacts. Environmental Impact Assessment Review, v.

, p. 106842, 1 set. 2022.

FRANCA, Adriana S.; OLIVEIRA, Leandro S. Coffee processing solid wastes: current uses and

future perspectives. Agricultural wastes, v. 9, p. 155-189, 2009.

FRÓMETA, R. A. R.; SÁNCHEZ, J. L.; GARCÍA, J. M. R. Evaluation of coffee pulp as

substrate for polygalacturonase production in solid state fermentation. Emirates Journal of

Food and Agriculture, v. 32, n. 2, p. 117–124, 5 mar. 2020.

GEISSDOERFER, Martin; SAVAGET, Paulo; BOCKEN, Nancy M.P.; HULTINK, Erik Jan.

The Circular Economy – A new sustainability paradigm?, Journal of Cleaner Production,

Volume 143, p. 757-768, 2017. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0959652616321023>

GIROTTO, F. et al. The broad spectrum of possibilities for spent coffee grounds valorisation.

Journal of Material Cycles and Waste Management, v. 20, n. 1, p. 695–701, 1 jan. 2018.

GREGG, J. S. et al. Valorization of bio-residuals in the food and forestry sectors in support of a

circular bioeconomy: A review. Journal of Cleaner Production, v. 267, p. 122093, 10 set. 2020.

GURRAM, R. et al. Technical possibilities of bioethanol production from coffee pulp: A

renewable feedstock. Clean Technologies and Environmental Policy, v. 18, n. 1, p. 269–278,

jan. 2016.

HAILE, M. Integrated volarization of spent coffee grounds to biofuels. Biofuel Research

Journal, v. 1, n. 2, p. 65–69, 1 jun. 2014.

HERNÁNDEZ, M. A.; SUSA, M. R.; ANDRES, Y. Use of coffee mucilage as a new substrate

for hydrogen production in anaerobic co-digestion with swine manure. Bioresource

Technology, v. 168, p. 112–118, 1 set. 2014.

HETEMÄKI, Lauri et al. Leading the way to a European circular bioeconomy strategy.

Joensuu, Finland: European Forest Institute, 2017.

HUSSAIN, N. et al. Cadmium (II) removal from aqueous solution using magnetic spent coffee

ground biochar: Kinetics, isotherm and thermodynamic adsorption. Materials Research

Express, v. 7, n. 8, p. 085503, 26 ago. 2020.

IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA ESTATÍSTICA. Pesquisa Agrícola

Municipal (PAM). Disponível em:

<https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producaoagricola-municipal-culturas-temporarias-e-permanentes.html?edicao=18051&t=publicacoes>.

Acesso em: 2 jun. 2023

IRIONDO-DEHOND, A. et al. Coffee Silverskin Extract Protects against Accelerated Aging

Caused by Oxidative Agents. Molecules 2016, Vol. 21, Page 721, v. 21, n. 6, p. 721, 1 jun. 2016.

KERSHAW, Eleanor Hadley; HARTLEY, Sarah; MCLEOD, Carmen; POLSON, Penelope. The

Sustainable Path to a Circular Bioeconomy. Trends in Biotechnology, Volume 39, Issue 6, p. 542-545, 2021. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S0167779920302924>

KIM, J.; KIM, H.; LEE, C. Ulva biomass as a co-substrate for stable anaerobic digestion of spent

coffee grounds in continuous mode. Bioresource Technology, v. 241, p. 1182–1190, 1 out.

KUMAR, N.; WELDON, R.; LYNAM, J. G. Hydrothermal carbonization of coffee silverskins.

Biocatalysis and Agricultural Biotechnology, v. 36, p. 102145, 1 set. 2021.

KWON, E. E.; YI, H.; JEON, Y. J. Sequential co-production of biodiesel and bioethanol with

spent coffee grounds. Bioresource Technology, v. 136, p. 475–480, 1 maio 2013.

LE, V. T. et al. Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared

from spent coffee grounds, shrimp shells and green tea extract. Environmental technology, v.

, n. 21, p. 2817–2832, 18 set. 2019.

LEONG, Y. K.; CHANG, J. S. Valorization of fruit wastes for circular bioeconomy: Current

advances, challenges, and opportunities. Bioresource Technology, v. 359, p. 127459, 1 set.

LIU, S. et al. Enhancement of As( v ) adsorption from aqueous solution by a magnetic

chitosan/biochar composite. RSC Advances, v. 7, n. 18, p. 10891–10900, 10 fev. 2017.

LOUKRI, A. et al. Green extraction of caffeine from coffee pulp using a deep eutectic solvent

(DES). Applied Food Research, v. 2, n. 2, p. 100176, 1 dez. 2022.

LOULIDI, I. et al. Assessment of Untreated Coffee Wastes for the Removal of Chromium (VI)

from Aqueous Medium. International Journal of Chemical Engineering, v. 2021, 2021.

MABEE, Warren E. Conceptualizing the circular bioeconomy. In: STEFANAKIS, Alexandros;

NIKOLAOU, Ioannis, (Ed.). Circular Economy and Sustainability. Elsevier, p. 53-69, 2022.

Disponível em: <https://www.sciencedirect.com/science/article/pii/B9780128198179000338>

MAHJOUB, B.; DOMSCHEIT, E. Chances and challenges of an organic waste–based

bioeconomy. Current Opinion in Green and Sustainable Chemistry, v. 25, p. 100388, 1 out.

MAK, T. M. W. et al. Sustainable food waste management towards circular bioeconomy: Policy

review, limitations and opportunities. Bioresource Technology, v. 297, p. 122497, 1 fev. 2020.

MANASA, V.; PADMANABHAN, A.; APPAIAH, K. A. A. Utilization of coffee pulp waste for

rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management,

v. 120, p. 762–771, 1 fev. 2021.

MARTINEZ, F. A. C. et al. Lactic acid properties, applications and production: A review.

Trends in Food Science & Technology, v. 30, n. 1, p. 70–83, 1 mar. 2013.

MARTINEZ-SAEZ, N. et al. A novel antioxidant beverage for body weight control based on

coffee silverskin. Food Chemistry, v. 150, p. 227–234, 1 maio 2014.

MARTINS, R. S. F. et al. Investigation of agro-industrial lignocellulosic wastes in fabrication of

particleboard for construction use. Journal of Building Engineering, v. 43, p. 102903, 1 nov.

MATOS, A. T. Tratamento de resíduos na pós-colheita do café. In: BOREM, F. M. (Ed.). Póscolheita do café. Lavras: Ed. UFLA, 2008. p. 159-201.

MAXISELLY, Y. et al. Digestibility, Blood Parameters, Rumen Fermentation, Hematology, and

Nitrogen Balance of Goats after Receiving Supplemental Coffee Cherry Pulp as a Source of

Phytochemical Nutrients. Veterinary Sciences 2022, Vol. 9, Page 532, v. 9, n. 10, p. 532, 28 set.

MESA, Jaime A.; SIERRA-FONTALVO, Lesly; ORTEGON, Katherine; GONZALEZQUIROGA; Arturo. Advancing circular bioeconomy: A critical review and assessment of

indicators. Sustainable Production and Consumption, Volume 46, 2024, p. 324-342.

Disponível em:

<https://www.sciencedirect.com/science/article/pii/S2352550924000678#bb0035>

MIRÓN-MÉRIDA, V. A. et al. Valorization of coffee parchment waste (Coffea arabica) as a

source of caffeine and phenolic compounds in antifungal gellan gum films. LWT, v. 101, p. 167–

, 1 mar. 2019.

MOHAN, S. V. et al. Waste biorefinery models towards sustainable circular bioeconomy: Critical

review and future perspectives. Bioresource Technology, v. 215, p. 2–12, 1 set. 2016.

MONTOYA, A. C. V. et al. Hydrogen, alcohols and volatile fatty acids from the co-digestion of

coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous

microorganisms. International Journal of Hydrogen Energy, v. 44, n. 39, p. 21434–21450, 13

ago. 2019.

MORONE, P., D'AMATO, D., BEFORT, N., & YILAN, G. The circular bioeconomy:

Theories and tools for economists and sustainability scientists. Cambridge University Press,

MURTHY, P. S.; NAIDU, M. M. Sustainable management of coffee industry by-products and

value addition—A review. Resources, Conservation and Recycling, v. 66, p. 45–58, 1 set.

NAM, G. et al. An Environmentally Benign Approach for As (V) Absorption from Wastewater

Using Untreated Coffee Grounds—Preliminary Results. Water 2017, Vol. 9, Page 867, v. 9, n.

, p. 867, 7 nov. 2017.

NEU, A. K. et al. Fermentative utilization of coffee mucilage using Bacillus coagulans and

investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid

production. Bioresource Technology, v. 211, p. 398–405, 1 jul. 2016.

OIC. ORGANIZAÇÃO INTERNACIONAL DO CAFÉ. Dados históricos sobre o

comércio global de café. Disponível em: <https://www.ico.org/new_historical.asp>. Acesso

em: 2 jun. 2023.

O’CALLAGHAN, K. Technologies for the utilisation of biogenic waste in the bioeconomy.

Food Chemistry, v. 198, p. 2–11, 1 maio 2016.

ORREGO, D.; ZAPATA-ZAPATA, A. D.; KIM, D. Ethanol production from coffee mucilage

fermentation by S. cerevisiae immobilized in calcium-alginate beads. Bioresource Technology

Reports, v. 3, p. 200–204, 1 set. 2018.

OSONG, S. H.; NORGREN, S.; ENGSTRAND, P. Processing of wood-based microfibrillated

cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review.

Cellulose 2015 23:1, v. 23, n. 1, p. 93–123, 27 out. 2015.

PARDO, L. M. F. et al. Comprehensive analysis of ethanol production from coffee mucilage

under sustainability indicators. Chemical Engineering and Processing - Process

Intensification, v. 182, p. 109183, 1 dez. 2022.

POLIDORO, A. DOS S. et al. Valorization of coffee silverskin industrial waste by pyrolysis:

From optimization of bio-oil production to chemical characterization by GC × GC/qMS.

Journal of Analytical and Applied Pyrolysis, v. 129, p. 43–52, 1 jan. 2018.

RABBI, Mohammad Fazle; AMIN, Mohammad Bin. Circular economy and sustainable practices

in the food industry: A comprehensive bibliometric analysis. Cleaner and Responsible

Consumption, Volume 14, 2024. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S2666784324000391>

REIS, R. S. et al. Characterization of coffee parchment and innovative steam explosion treatment

to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials

Research and Technology, v. 9, n. 4, p. 9412–9421, 1 jul. 2020

RODRIGUES, F. et al. In vitro and in vivo comparative study of cosmetic ingredients Coffee

silverskin and hyaluronic acid. Experimental Dermatology, v. 25, n. 7, p. 572–574, 1 jul. 2016.

RODIGUEZ, M. H. et al. Adsorption of Ni(II) on spent coffee and coffee husk based activated

carbon. Journal of Environmental Chemical Engineering, v. 6, n. 1, p. 1161–1170, 1 fev.

SANTANA, M. S. et al. Hydrochar production from defective coffee beans by hydrothermal

carbonization. Bioresource Technology, v. 300, p. 122653, 1 mar. 2020.

SANTOS, É. M. DOS et al. Coffee by-products in topical formulations: A review. Trends in

Food Science & Technology, v. 111, p. 280–291, 1 maio 2021.

SERNA-JIMÉNEZ, J. A. et al. Advanced extraction of caffeine and polyphenols from coffee

pulp: Comparison of conventional and ultrasound-assisted methods. LWT, v. 177, p. 114571, 1

mar. 2023.

SHANMUGAM, M. K.; RATHINAVELU, S.; GUMMADI, S. N. Self-directing optimization for

enhanced caffeine degradation in synthetic coffee wastewater using induced cells of

Pseudomonas sp.: Bioreactor studies. Journal of Water Process Engineering, v. 44, p. 102341, 1 dez. 2021.

SHEN, M. Y. et al. Improvement of gaseous bioenergy production from spent coffee grounds

Co-digestion with pulp wastewater by physical/chemical pretreatments. International Journal of

Hydrogen Energy, v. 47, n. 96, p. 40664–40671, 12 dez. 2022.

SHENOY, D. et al. A study on bioethanol production from cashew apple pulp and coffee pulp

waste. Biomass and Bioenergy, v. 35, n. 10, p. 4107–4111, 15 out. 2011.

SOLARTE-TORO, J. C.; ALZATE, C. A. C. Biorefineries as the base for accomplishing the

sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects,

challenges and perspectives. Bioresource Technology, v. 340, p. 125626, 1 nov. 2021.

STEGMANN, Paul; LONDO, Marc; JUNGINGER, Martin. The circular bioeconomy: Its

elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X,

v. 6, p. 100029, 2020.

SWAMINAATHAN, Pavithra; SARAVANAN, A.; THAMARAI, P. Utilization of bioresources

for high-value bioproducts production: Sustainability and perspectives in circular bioeconomy.

Sustainable Energy Technologies and Assessments, Volume 63, 2024. Disponível em:

<https://www.sciencedirect.com/science/article/pii/S2213138824000687>

TALAN, A. et al. Biorefinery strategies for microbial bioplastics production: Sustainable pathway

towards Circular Bioeconomy. Bioresource Technology Reports, p. 100875, 6 nov. 2021.

TORRACO, R. J. Writing Integrative Literature Reviews: Guidelines and Examples. Human

Resource Development Review, 4(3), p. 356-367, 2005. Disponível em:

<https://journals.sagepub.com/doi/abs/10.1177/1534484305278283>

UBANDO, A. T.; FELIX, C. B.; CHEN, W. H. Biorefineries in circular bioeconomy: A

comprehensive review. Bioresource Technology, v. 299, p. 122585, 1 mar., 2020.

VÍTĚZ, T. et al. ON THE SPENT COFFEE GROUNDS BIOGAS PRODUCTION. Acta

Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, v. 64, p. 143, 2016.

WEI, X. et al. Knowledge Mapping of bioeconomy: A bibliometric analysis. Journal of Cleaner

Production, v. 373, p. 133824, 1 nov. 2022.

YAASHIKAA, P. R.; KUMAR, P. S.; VARJANI, S. Valorization of agro-industrial wastes for

biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, v. 343,

p. 126126, 1 jan. 2022.

YADIRA, P. S. B. et al. Bioethanol Production from Coffee Mucilage. Energy Procedia, v. 57,

p. 950–956, 1 jan. 2014.

YEN, H. Y.; HUANG, S. L. Ni(II) removal from wastewater by solar energy-degreased spent

coffee grounds. New pub: Balaban, v. 57, n. 32, p. 15049–15056, 8 jul. 2015.

YÉPEZ, A. et al. Biopreservation potential of lactic acid bacteria from Andean fermented food

of vegetal origin. Food Control, v. 78, p. 393–400, 1 ago. 2017.

Downloads

Publicado

2024-12-20

Edição

Seção

Artigos