Nonlinear dynamic geomorphological systems: A review

Authors

DOI:

https://doi.org/10.22481/rg.v6.e2022.e10651

Keywords:

Dissipative Structures, Chaos theory, Catastrophe Theory, Fractal Geometry

Abstract

The complexity science presented a proposal for a paradigmatic rupture in the scientific environment. Among other advances, his greatest contribution is in the understanding of non-linear dynamic systems, which predominate in nature, thus revolutionizing the concept and analysis of physical systems. Several complexity theories can be applied to relief analysis, from the perspective of non-linear systems, and this paradigm has the potential to revolutionize the studies of morphological systems, in addition to integrating several topics that were previously analyzed in isolation. In this work, the concepts of Dissipative Structures, Chaos Theory, Catastrophe Theory and Fractal Geometry are presented, seeking to correlate with the analysis of non-linear dynamic geomorphological systems, sustaining that these theories have theoretical-methodological potential fully applicable in studies of geomorphology.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Matheus Silveira de Queiroz, Universidade Federal do Amazonas - UFAM

Universidade Federal do Amazonas - UFAM

José Alberto Lima de Carvalho , Universidade Federal do Amazonas - UFAM

Doutor Geografia pela Universidade Federal Fluminense - UFF

Professor da Universidade Federal do Amazonas - UFAM

References

ARNOLD, V.I. Catastrophe Theory. Heidelberg, Springer, 1986.

ASSIS, T.A.; MIRANDA, J.G.V.; MOTA, F.B.; ANDRADE, R.F.S.; CASTILHO, C.M.C. Geometria fractal: propriedades e características de fractais ideais. Revista Brasileira de Ensino de Física, v. 30, n. 2, 2304, 2008.

BAAS, A. Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology, v. 48, pp. 309–328, 2002.

BASTO, A. S.; CARMO, F. G. Teoria da Catástrofe e Aplicações. Monografia (Universidade Federal do Amapá), Macapá, 2013.

BUNDE A.; HAVLIN S. A Brief Introduction to Fractal Geometry. In: BUNDE A.; HAVLIN S. (eds). Fractals in Science. Springer, Berlin, Heidelberg, 1994.

CAPRA, F. A Teia da Vida. Cultrix: São Paulo, 1997.

CULLING, W.E.D. Equifinality: chaos, dimension and patters. The concepts of non-linear dynamical systems theory and their potential for physical geography. London School of Economics, Geography Discussion Paper, New Series n° 19, 1985.

CULLING, W.E.D. Equifinality: Modern Approaches to Dynamical Systems and Their Potential for Geographical Thought. Trans. Instr. Br. Geogr. N.S, v. 12, pp. 67-72, 1986.

DAVIS, W.M. The geographical cycle. Geographical Journal, v. 14, pp. 481–504, 1899.

DOU, W.; GHOSE, S. A dynamic nonlinear model of online retail competition using Cusp Catastrophe Theory. Journal of Business Research, v. 59, n. 7, pp. 838–848, 2006.

DUNNE, T. Formation and controls of channel networks. Progress in Physical Geography, v. 4, pp. 211–239, 1980.

ELSHORBAGY, A.; SIMONOVIC, S.P.; PANU, U.S. Estimation of missing streamflow data using principles of chaos theory. Journal of Hydrology, v. 255, pp. 123-133, 2002.

ESSEX, C.; LOOKMAN, T.; NERENBERG, M.A.H. The climate attractor over short timescale. Nature, vol. 326, pp. 64-66, 1987.

FARZIN, S.; IFAEI, P.; FARZIN, N.; HASSANZADEH, Y.; AALAMI, M.T. An Investigation on Changes and Prediction of Urmia Lake water Surface Evaporation by Chaos Theory. Int. J. Environ. Res., v. 6, n. 3, pp. 815-824, 2012.

FEDER, J. Fractals. New York, Plenum Press, 283 p, 1988.

FRAEDRICH, K. Estimating the dimensions of whether and climate attractor. Journal of the Atmospheric Sciences, Vol. 43, pp. 419-432, 1986.

FRAEDRICH, K. Estimating whether and climate predictability on attractors. Journal of the Atmospheric Sciences, Vol. 44, pp. 722-728, 1987.

FREEMAN, D. Complexity Theory: A New Way to Think. RBLA, Belo Horizonte, v. 13, n. 2, p. 369-373, 2013.

GIBSON, C. G. Singular Points of smooth mappings. 1. ed. London: Pitman Publishing Limited, 1970.

GILBERT, G.K. Report on the geology of the Henry Mountains. Washington, DC: United States Geographical and Geological Survey of the Rocky Mountain Region, 160 pp, 1877.

GLEICK, J. Chaos: Making a New Science. New York: Viking Penguin, 1987.

GRAF, W.L. Catastrophe theory as a model for change in fluvial systems. In: RHODES, D.D.; WILLIAMS, G.P. (Orgs.). Adjustments of the Fluvial System. Routledge, IA, pp. 13-32, 1982.

GRAF, W.L. Applications of catastrophe theory in fluvial geomorphology. In: ANDERSON, M.G. (Orgs.). Modelling Geomorphological Systems. Wiley, Chichester, pp. 33-48, 1988.

HACK, J.T. Studies of Longitudinal stream profiles in Virginia and Maryland. U.S Geol. Survey. Prof. Paper, pp. 45-97, 1957.

HACK, J.T. Interpretation of erosional topography in humid temperate regions. American Journal of Science, v. 258A, pp. 80–97, 1960.

HACK, J.T. Geomorphology of the Shenandoach Valley, Virginia and West Virginia, and origin of the residual deposits. U.S Geol. Survey. Prof. Paper, n 484, 1965.

HARRISON, R.G.; BISWAS, D.J. Chaos in Light. Nature, Vol. 321, pp. 395-401, 1986.

HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol. Soc. America Bulletin, pp. 275-370, 1945.

HUGGET, R.J. Dissipative Systems: Implications for Geomorphology. Earth Surface Processes and Landforms, v. 13, 4549, 1988.

HUGGETT, R.J. Systems Analysis in Geography. Clarendon, Oxford, 1980.

HUGGETT, R.J. Earth Surface Systems. Springer, New York, 1985.

KHATIBI, R.; GHORBANI, M.A.; AALAMI, M.T.; KOCAK, K.; MAKARYNSKYY, O.; MAKARYNSKA, D.; AALINEZHAD, M. Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective. Ocean Dynamics, v. 61, pp. 1797–1807, 2011.

KONDEPUDI, D.; PRIGOGINE, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons Ltd, England, 1997.

LORENZ, E.N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, v. 20, pp. 130-141, 1963.

LORENZ, E.N. The problem of deducing the climate from the governing equations. Tellus, Vol. 16, pp. 1-11, 1964.

LORENZ, E.N. Can Chaos and intransitivity lead to interannual variability? Tellus, v. 42, pp. 378-389, 1990.

MALANSON, G.P., BUTLER, D.R., WALSH, S.J. Chaos theory in physical geography. Physical Geography, v. 11, pp. 293-304, 1990.

MANDELBROT, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, v. 156, pp. 636–638, 1967.

MANDELBROT, B. The Fractal Geometry of Nature. W.H. Freeman and Company, New York, 1983.

MANDELBROT, B.B. Les Objets Fractals: Forme, Hasard et Dimension. Paris: Flammarion, 1975.

MANDELBROT, B.B. Fractals: Form, Change, and Dimension. New York: W.H. Freeman, 1977.

MORIN, E. O método I: a natureza da natureza. Europa América, 1975.

MURRAY, A.B.; LAZARUS, E.; ASHTON, A.; BAAS, A.; COCO, G.; COULTHARD, T.; FONSTAD, M.; HAFF, P.; MCNAMARA, D.; PAOLA, C.; PELLETIER, J.; REINHARDT, L. Geomorphology, complexity, and the emerging science of the Earth's surface. Geomorphology, v. 103, pp. 496–505, 2009.

NICOLIS, C; NICOLIS, G. Is there a climatic attractor? Nature, vol. 311, pp. 529-532, 1984.

OLIVEIRA, A. R. C. A classificação das formas binárias aplicada em máquina de catástrofes. 59f. Dissertação (Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas). Rio Claro, 2010.

PERCIVAL, I. Chaos: A science for the real world. New Scientist, v. 124, 42-47, 1989.

PHILLIPS, J.D. Nonlinear dynamical in geomorphology: revolution or evolution? Geomorphology, v. 5, n. 3-5, pp. 219-229, 1992.

PRIGOGINE, I. Introduction to Thermodynamics of Irreversible Processes. New York: John Wiley, 1967.

PRIGOGINE, I. From Being to Becoming: Time and Complexity in the Physical Sciences, Freeman, San Francisco, 272 pp, 1980.

PRIGOGINE, I.; STENGERES, I. A Nova Aliança: Metamorfose da Ciência. Brasília; Ed. Da UnB, 1991.

SCHUMM, S. A. (1973). Geomorphic thresholds and complex response of drainage systems. In MORISAWA, M. (Org.). Fluvial Geomorphology. State University of New York, pp. 299-310, 1973.

SIVAKUMAR, B. Chaos theory in hydrology: important issues and interpretations. Journal of Hydrology, v. 227, pp. 1–20, 2000.

SIVAKUMAR, B. (2009). Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess, v. 23, pp. 1027–1036, 2009.

SIVAKUMAR, B. Chaos in Hydrology: Bridging Determinism and Stochasticity. Springer, 2017.

SOLOMATINE, D.P.; ROJAS, C.J.; VELICKOV, S.; WÜST, J.C. Chaos theory in predicting surge water levels in the North Sea. Proc. 4-th International Conference on Hydroinformatics, Iowa, USA, 2000.

STEWART, C.A.; TURCOTTE, D.L. The route to chaos in thermal convection at infinite Prandtl number. Some trajectories and bifurcations. Journal of Geophysical Research. v. 94, pp. 13707-12717, 1989.

STEWART, I. Applications of catastrophe theory to the physical sciences. Physica D: Nonlinear Phenomena, v. 2, n. 2, pp. 245–305, 1981.

STRAHLER, A. N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Un., v. 38, pp. 3-20, 1957.

STRAHLER, A.N. Equilibrium theory of erosional slopes approached by frequency distribution analysis. American Journal of Science, v. 248, pp. 673–696, 1950.

TABOR, M. Chaos and integrability in nonlinear dynamics: An Introduction. New York: Wiley, 1989.

THIÉTART, R.A.; FORGUES, B. Chaos Theory and Organization. Organization Science, v. 6, n. 1, pp.19-31, 1995.

THORNES, J.B. Structural instability and ephemeral channel behavior. Z. Geomorphology., v. 26, pp. 233-244, 1981.

THORNES, J.B. Evolutionary geomorphology. Geography, v. 68, pp. 225-235.

THORNES, J.B. The ecology of erosion. Geography, v. 70, pp. 222-235, 1985.

THORNES, J. Models for Paleohydrology in Practice. In: GREGORY, K.J.; LEWIN, J.; THORNES, J.B. Paleohydrology in Practice. Chichester [West Sussex], 1987.

TSONIS, A.A. Chaos and unpredictability of whether. Whether, v. 44, pp. 258-263, 1989.

TSONIS, A.A.; ELSNER, J.B. Chaos, Stranger attractors, and whether. Bulletin of American Meteorological Society, v. 70, pp. 14-23, 1989.

TURCOTTE, D.L. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, 1997.

WOODCOCK, A; DAVIS, M. Catastrophe theory. New York: E. P. Dutton, 1978.

YAN, Z. (1987). Dissipative Structure Theory and System Evolution. Fujian People Press, Fuzhou, pp. 72-78, 1987.

YIN, R. Theory and Methods of Metallurgical Process Integration. Metallurgical Industry Press, 2016.

Published

2022-11-05

How to Cite

QUEIROZ, M. S. de; CARVALHO , J. A. L. de. Nonlinear dynamic geomorphological systems: A review. Geopauta, [S. l.], v. 6, p. e10651, 2022. DOI: 10.22481/rg.v6.e2022.e10651. Disponível em: https://periodicos2.uesb.br/index.php/geo/article/view/10651. Acesso em: 30 nov. 2022.

Issue

Section

Continuous demand articles