Sistemas geomorfológicos dinâmicos não-lineares: Uma revisão

Autores

DOI:

https://doi.org/10.22481/rg.v6.e2022.e10651

Palavras-chave:

Estruturas Dissipativas, Teoria do Caos, Teoria das Catástrofes, Geometria Fractal

Resumo

A ciência da complexidade apresentou uma proposta de ruptura paradigmática no meio científico. Entre outros avanços sua maior contribuição é na compreensão dos sistemas dinâmicos não-lineares, que predominam na natureza, revolucionando assim o conceito e análise dos sistemas físicos. Várias teorias da complexidade podem ser aplicadas à análise do relevo, sob a ótica dos sistemas não-lineares, e este paradigma possui potencial de revolucionar os estudos dos sistemas morfológicos, além de integrar diversos tópicos que antes eram analisados isoladamente. Neste trabalho, apresenta-se os conceitos das Estruturas Dissipativas, Teoria do Caos, Teoria das Catástrofes e Geometria Fractal, buscando correlacionar com análise dos sistemas geomorfológicos dinâmicos não-lineares sustentando-se que essas teorias possuem potencial teórico-metodológico plenamente aplicáveis em estudos de geomorfologia.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Biografia do Autor

Matheus Silveira de Queiroz, Universidade Federal do Amazonas - UFAM

Universidade Federal do Amazonas - UFAM

José Alberto Lima de Carvalho , Universidade Federal do Amazonas - UFAM

Doutor Geografia pela Universidade Federal Fluminense - UFF

Professor da Universidade Federal do Amazonas - UFAM

Referências

ARNOLD, V.I. Catastrophe Theory. Heidelberg, Springer, 1986.

ASSIS, T.A.; MIRANDA, J.G.V.; MOTA, F.B.; ANDRADE, R.F.S.; CASTILHO, C.M.C. Geometria fractal: propriedades e características de fractais ideais. Revista Brasileira de Ensino de Física, v. 30, n. 2, 2304, 2008.

BAAS, A. Chaos, fractals and self-organization in coastal geomorphology: simulating dune landscapes in vegetated environments. Geomorphology, v. 48, pp. 309–328, 2002.

BASTO, A. S.; CARMO, F. G. Teoria da Catástrofe e Aplicações. Monografia (Universidade Federal do Amapá), Macapá, 2013.

BUNDE A.; HAVLIN S. A Brief Introduction to Fractal Geometry. In: BUNDE A.; HAVLIN S. (eds). Fractals in Science. Springer, Berlin, Heidelberg, 1994.

CAPRA, F. A Teia da Vida. Cultrix: São Paulo, 1997.

CULLING, W.E.D. Equifinality: chaos, dimension and patters. The concepts of non-linear dynamical systems theory and their potential for physical geography. London School of Economics, Geography Discussion Paper, New Series n° 19, 1985.

CULLING, W.E.D. Equifinality: Modern Approaches to Dynamical Systems and Their Potential for Geographical Thought. Trans. Instr. Br. Geogr. N.S, v. 12, pp. 67-72, 1986.

DAVIS, W.M. The geographical cycle. Geographical Journal, v. 14, pp. 481–504, 1899.

DOU, W.; GHOSE, S. A dynamic nonlinear model of online retail competition using Cusp Catastrophe Theory. Journal of Business Research, v. 59, n. 7, pp. 838–848, 2006.

DUNNE, T. Formation and controls of channel networks. Progress in Physical Geography, v. 4, pp. 211–239, 1980.

ELSHORBAGY, A.; SIMONOVIC, S.P.; PANU, U.S. Estimation of missing streamflow data using principles of chaos theory. Journal of Hydrology, v. 255, pp. 123-133, 2002.

ESSEX, C.; LOOKMAN, T.; NERENBERG, M.A.H. The climate attractor over short timescale. Nature, vol. 326, pp. 64-66, 1987.

FARZIN, S.; IFAEI, P.; FARZIN, N.; HASSANZADEH, Y.; AALAMI, M.T. An Investigation on Changes and Prediction of Urmia Lake water Surface Evaporation by Chaos Theory. Int. J. Environ. Res., v. 6, n. 3, pp. 815-824, 2012.

FEDER, J. Fractals. New York, Plenum Press, 283 p, 1988.

FRAEDRICH, K. Estimating the dimensions of whether and climate attractor. Journal of the Atmospheric Sciences, Vol. 43, pp. 419-432, 1986.

FRAEDRICH, K. Estimating whether and climate predictability on attractors. Journal of the Atmospheric Sciences, Vol. 44, pp. 722-728, 1987.

FREEMAN, D. Complexity Theory: A New Way to Think. RBLA, Belo Horizonte, v. 13, n. 2, p. 369-373, 2013.

GIBSON, C. G. Singular Points of smooth mappings. 1. ed. London: Pitman Publishing Limited, 1970.

GILBERT, G.K. Report on the geology of the Henry Mountains. Washington, DC: United States Geographical and Geological Survey of the Rocky Mountain Region, 160 pp, 1877.

GLEICK, J. Chaos: Making a New Science. New York: Viking Penguin, 1987.

GRAF, W.L. Catastrophe theory as a model for change in fluvial systems. In: RHODES, D.D.; WILLIAMS, G.P. (Orgs.). Adjustments of the Fluvial System. Routledge, IA, pp. 13-32, 1982.

GRAF, W.L. Applications of catastrophe theory in fluvial geomorphology. In: ANDERSON, M.G. (Orgs.). Modelling Geomorphological Systems. Wiley, Chichester, pp. 33-48, 1988.

HACK, J.T. Studies of Longitudinal stream profiles in Virginia and Maryland. U.S Geol. Survey. Prof. Paper, pp. 45-97, 1957.

HACK, J.T. Interpretation of erosional topography in humid temperate regions. American Journal of Science, v. 258A, pp. 80–97, 1960.

HACK, J.T. Geomorphology of the Shenandoach Valley, Virginia and West Virginia, and origin of the residual deposits. U.S Geol. Survey. Prof. Paper, n 484, 1965.

HARRISON, R.G.; BISWAS, D.J. Chaos in Light. Nature, Vol. 321, pp. 395-401, 1986.

HORTON, R. E. Erosional development of streams and their drainage basins: hydrophysical approach to quantitative morphology. Geol. Soc. America Bulletin, pp. 275-370, 1945.

HUGGET, R.J. Dissipative Systems: Implications for Geomorphology. Earth Surface Processes and Landforms, v. 13, 4549, 1988.

HUGGETT, R.J. Systems Analysis in Geography. Clarendon, Oxford, 1980.

HUGGETT, R.J. Earth Surface Systems. Springer, New York, 1985.

KHATIBI, R.; GHORBANI, M.A.; AALAMI, M.T.; KOCAK, K.; MAKARYNSKYY, O.; MAKARYNSKA, D.; AALINEZHAD, M. Dynamics of hourly sea level at Hillarys Boat Harbour, Western Australia: a chaos theory perspective. Ocean Dynamics, v. 61, pp. 1797–1807, 2011.

KONDEPUDI, D.; PRIGOGINE, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures. John Wiley & Sons Ltd, England, 1997.

LORENZ, E.N. Deterministic nonperiodic flow. Journal of the Atmospheric Sciences, v. 20, pp. 130-141, 1963.

LORENZ, E.N. The problem of deducing the climate from the governing equations. Tellus, Vol. 16, pp. 1-11, 1964.

LORENZ, E.N. Can Chaos and intransitivity lead to interannual variability? Tellus, v. 42, pp. 378-389, 1990.

MALANSON, G.P., BUTLER, D.R., WALSH, S.J. Chaos theory in physical geography. Physical Geography, v. 11, pp. 293-304, 1990.

MANDELBROT, B. How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, v. 156, pp. 636–638, 1967.

MANDELBROT, B. The Fractal Geometry of Nature. W.H. Freeman and Company, New York, 1983.

MANDELBROT, B.B. Les Objets Fractals: Forme, Hasard et Dimension. Paris: Flammarion, 1975.

MANDELBROT, B.B. Fractals: Form, Change, and Dimension. New York: W.H. Freeman, 1977.

MORIN, E. O método I: a natureza da natureza. Europa América, 1975.

MURRAY, A.B.; LAZARUS, E.; ASHTON, A.; BAAS, A.; COCO, G.; COULTHARD, T.; FONSTAD, M.; HAFF, P.; MCNAMARA, D.; PAOLA, C.; PELLETIER, J.; REINHARDT, L. Geomorphology, complexity, and the emerging science of the Earth's surface. Geomorphology, v. 103, pp. 496–505, 2009.

NICOLIS, C; NICOLIS, G. Is there a climatic attractor? Nature, vol. 311, pp. 529-532, 1984.

OLIVEIRA, A. R. C. A classificação das formas binárias aplicada em máquina de catástrofes. 59f. Dissertação (Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas). Rio Claro, 2010.

PERCIVAL, I. Chaos: A science for the real world. New Scientist, v. 124, 42-47, 1989.

PHILLIPS, J.D. Nonlinear dynamical in geomorphology: revolution or evolution? Geomorphology, v. 5, n. 3-5, pp. 219-229, 1992.

PRIGOGINE, I. Introduction to Thermodynamics of Irreversible Processes. New York: John Wiley, 1967.

PRIGOGINE, I. From Being to Becoming: Time and Complexity in the Physical Sciences, Freeman, San Francisco, 272 pp, 1980.

PRIGOGINE, I.; STENGERES, I. A Nova Aliança: Metamorfose da Ciência. Brasília; Ed. Da UnB, 1991.

SCHUMM, S. A. (1973). Geomorphic thresholds and complex response of drainage systems. In MORISAWA, M. (Org.). Fluvial Geomorphology. State University of New York, pp. 299-310, 1973.

SIVAKUMAR, B. Chaos theory in hydrology: important issues and interpretations. Journal of Hydrology, v. 227, pp. 1–20, 2000.

SIVAKUMAR, B. (2009). Nonlinear dynamics and chaos in hydrologic systems: latest developments and a look forward. Stoch Environ Res Risk Assess, v. 23, pp. 1027–1036, 2009.

SIVAKUMAR, B. Chaos in Hydrology: Bridging Determinism and Stochasticity. Springer, 2017.

SOLOMATINE, D.P.; ROJAS, C.J.; VELICKOV, S.; WÜST, J.C. Chaos theory in predicting surge water levels in the North Sea. Proc. 4-th International Conference on Hydroinformatics, Iowa, USA, 2000.

STEWART, C.A.; TURCOTTE, D.L. The route to chaos in thermal convection at infinite Prandtl number. Some trajectories and bifurcations. Journal of Geophysical Research. v. 94, pp. 13707-12717, 1989.

STEWART, I. Applications of catastrophe theory to the physical sciences. Physica D: Nonlinear Phenomena, v. 2, n. 2, pp. 245–305, 1981.

STRAHLER, A. N. Quantitative analysis of watershed geomorphology. Trans. Am. Geophys. Un., v. 38, pp. 3-20, 1957.

STRAHLER, A.N. Equilibrium theory of erosional slopes approached by frequency distribution analysis. American Journal of Science, v. 248, pp. 673–696, 1950.

TABOR, M. Chaos and integrability in nonlinear dynamics: An Introduction. New York: Wiley, 1989.

THIÉTART, R.A.; FORGUES, B. Chaos Theory and Organization. Organization Science, v. 6, n. 1, pp.19-31, 1995.

THORNES, J.B. Structural instability and ephemeral channel behavior. Z. Geomorphology., v. 26, pp. 233-244, 1981.

THORNES, J.B. Evolutionary geomorphology. Geography, v. 68, pp. 225-235.

THORNES, J.B. The ecology of erosion. Geography, v. 70, pp. 222-235, 1985.

THORNES, J. Models for Paleohydrology in Practice. In: GREGORY, K.J.; LEWIN, J.; THORNES, J.B. Paleohydrology in Practice. Chichester [West Sussex], 1987.

TSONIS, A.A. Chaos and unpredictability of whether. Whether, v. 44, pp. 258-263, 1989.

TSONIS, A.A.; ELSNER, J.B. Chaos, Stranger attractors, and whether. Bulletin of American Meteorological Society, v. 70, pp. 14-23, 1989.

TURCOTTE, D.L. Fractals and Chaos in Geology and Geophysics. Cambridge University Press, 1997.

WOODCOCK, A; DAVIS, M. Catastrophe theory. New York: E. P. Dutton, 1978.

YAN, Z. (1987). Dissipative Structure Theory and System Evolution. Fujian People Press, Fuzhou, pp. 72-78, 1987.

YIN, R. Theory and Methods of Metallurgical Process Integration. Metallurgical Industry Press, 2016.

Downloads

Publicado

2023-04-03

Como Citar

QUEIROZ, M. S. de; CARVALHO , J. A. L. de. Sistemas geomorfológicos dinâmicos não-lineares: Uma revisão. Geopauta, [S. l.], v. 6, p. e10651, 2023. DOI: 10.22481/rg.v6.e2022.e10651. Disponível em: https://periodicos2.uesb.br/index.php/geo/article/view/10651. Acesso em: 22 dez. 2024.

Edição

Seção

Artigos