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Logaritmo de Kaniadakis como nticleo de operadores fracionarios

Resumo

Neste artigo, sdo propostos novos tipos de operadores fracionarios com nticleo logarit-
mico x-deformado. Analisamos esses operadores e provamos varios fatos sobre eles,
incluindo uma propriedade de semigrupo. Os resultados da existéncia sdo estabele-
cidos em espacos funcionais apropriados. Provamos que esses resultados sdo vali-
dos de uma s6 vez para varios operadores fracionarios classicos, como os operadores
de Riemann-Liouville, Caputo e os operadores de Hadamard dependendo da mudanca
de escala. Mostramos também que nossa técnica pode ser Util para resolver algumas
equacBes integrais de Volterra. Finalmente, as solu¢fes das equacbes diferenciais «-
fraciondrias podem ser deduzidas da representacéo da solugdo das versées Caputo ou
Riemann-Liouville via mudanga de escala.

Palavras-chave: Integrais Fracionarias; Derivadas Fraciondrias; Logaritmo de Kani-
adakis.

Abstract

In this article, more general types of fractional operators with «-deformed logarithm ker-
nels are proposed. We analyse the new operators and prove various facts about them,
including a semigroup property. Results of existence are established in appropriate func-
tional spaces. We prove that these results are valid at once for several standard fractional
operators such as the Riemann-Liouville and Caputo operators, the Hadamard opera-
tors depending on the of the scaling function. We also show that our technique can be
useful to solve a wide range of Volterra integral equations. Finally, the solutions of the
r-fractional differential equations can be deduced from the solution representation of the
Caputo or Riemann-Liouville versions via scaling.
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1 Introduction

Fractional calculus is an emerging field of applied mathematics devoted to the use of
mathematical methods and applications of integro-differential equations involving fractional
operators. In literature there are many different definitions of fractional derivatives and inte-
grals (see [1, 2, 3, 4, 5, 6] and the references therein). One of these definitions was introduced

by Hadamard [7] in 1892. The Hadamard fractional derivative can be regarded as general-

ization of the operator (t%)” while the Riemann-Liouville derivative can be viewed as an

extension of the classic differential operator (%)" cursorily [8].

The mathematical foundations of the Kaniadakis statistical mechanics are based on the

zh—g™"

2K
function, the x-deformed exponential (or Kaniadakis exponential): exp, z = exp(* arsinh xz).

K

r-deformed logarithm function (or Kaniadakis logarithm) [9]: In, z = , and its inverse
Note that for any || < 1, In, and exp,(z) are continuous, monotonic, increasing functions,
normalized in In,(1) = 0 and exp,(0) = 1, with In,(R*) C R and exp,(R) € RT. In
particular we obtain exp, (z) exp,(—z) = 1 and In,(x) + In,(1/2) = 0. Moreover, these
r-functions, fulfil the following scaling-laws exp,. (ux) = exp,,(x)* and In,(z") = p In.(x),
where k' = pk, (see [10], [11], [12] for details).

This paper is structured in the following manner: In Section 2, we provide some prelim-
inaries for fractional calculus. In Section 3, we consider fractional calculus with Kaniadakis
logarithm kernels and state their properties. In Section 4, we establishing appropriate function
spaces in which they can be applied. In Section 5, we discuss the k-Caputo-Hadamard deriva-
tives. We also give some examples where Volterra integral equations of the second kind are

solved. Finally, some conclusions are presented in Section 7.

2 Preliminaries and Background Materials

In this section, we present some basic notations, definitions, and preliminary results, which
will be used throughout this paper. We also recall some essential results whose proofs can be

seen in the literature.

Let [a,b] (0 < a < b < o0) be a finite interval on the half-axis R*. Denote by C[a, ], the

spaces of the continuous function f on [a, b] with norm defined by [13]

[ llegar = max [f (6],

tela,b]

and AC"[a,b], the space of n-times absolutely continuous differentiable functions on [a, b],
given by
AC™[a,b] = {h: [a,b] = R :h""D e AC[a,b]}.
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Definition 2.1 ([14]). For € C, Re(z) > 0, the Euler gamma function is given by
['(2) :/ t*te~tdt.
0

Moreover, I'(z + 1) = 2I'(2).
Definition 2.2 ([7]). The Riemann-Liouville (RL) fractional integral with order & > 0 (or
a € C with Re(a) > 0) of a given function f € L!(a,b) is defined by

I2@) = g [ @ttt

where = € (a,b) and a < b in R. This is the fractional power of the standard differentiation

d
operator .

Definition 2.3. The (left) Riemann-Liouville fractional derivative of order v and its Caputo

modification are defined for any function f € AC"[a, ] respectively by

s = (00) " 0= gy () [ O

and

o _ in—a ( #(n) _ 1 Lo fM(s) <
D) =1 (1) 0 = gy L gy @ )

where n := |Re(a)] + 1 so that n — 1 < Re(a) < n.

We note that the Riemann—Liouville and Caputo fractional derivatives both stem from the
same definition of fractional integrals, simply combining this with the original differentiation

operation in one order or the other.

Definition 2.4 ([7]). The Riemann—-Liouville fractional integral with order a« > 0 (or a € C

with Re(a) > 0) of a given function f with respect to a monotonic C'! function g is defined

as
a - 1 z a—1 ,
T30/ @) = | (s@ = 9)" g 1) ar,
where x € (a,b) and a < b in R. This is the fractional power of the operator ﬁ(x) = ﬁ . %

of differentiation with respect to the function g.

The Riemann—Liouville and Caputo fractional derivatives with order & > 0 (or a € C with
Re(a) > 0) of a given function f, with respect to a monotonic C! function g, are defined

respectively as

1 d\"
R Nna o n—o
aDg(x)f(‘T> - ( ’ dl’) aIg(x) (I‘),

« n—o 1 d "
CaDg(z)f(x) = (lIg(:c) ( : dx) f(z),
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where n — 1 < Re(a) <n € Z*, z € (a,b), and a < b in R.

Note that in the particular case g(z) = z, I, reduces to Riemann-Liouville fractional

integral of order . In the case g(z) = Inz (a > 0), I3, reduces to Hadamard fractional

a

integral of order v (see [15], [16], [17] for more details).

3 Fractional operators with «-logarithm kernel

In this section, we shall exploit the concept of our new Hadamard type fractional integral

operator.

The nth, n € Z* order fractional integral of a function f with respect to the parametric

function [}’ g%(s)ds, with g.(7) = mnii,ﬁ, has the form
z dn T dry Tn—1 dr
(Z]I: €T = / / P / f T
@ = ) e w T T
e [ e )T ke 0 (3
= Il,{:E - HRT T 9 K Y Y x a.
(n — 1)' a gm(T)

Remark 3.1. The fractional integral in (3) coincides with the Hadamard fractional integral

when k = 0.

The corresponding derivative is

(04f) () = (gm) : j;) (f()),
(0rf) (@) = 6. (57 f) (@)

- (00 1) (), ®

Remark 3.2. We can also give a definition of limit form of §,-derivative operator in the following

(o) 31 ) ) = g 1T, 5

gr ()

way,

The fractional versions of the integral in (3) and the derivative (in Riemann-Liouville

settings) in (4) are

(e I0f) (2) = —— / " (2 — Ing )" F(7)
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and
(o D2f) () = (Opef) ()
1 n xn:v—nTn_leT
- ot ([ w0 )

respectively, where n = [a] + 1, [a] being the integer part of a.

Property 3.3. Let n € Z*, a > 0 and k € (0, 1),

L (65 oI5 f) () = f(2).

2. (o+I7 01 f) (z) = f(z) — 2_:

Proof. Item (1) can be easily proved using (3), (4) and the Leibniz rule for integrals. For (2),
by

x dr
I 6 ) (2) = In,z — In, 7)" " o f(r
( f) () ( ) f( >gn(7)
— (In, z — In, 7')"_1 Ci_5§1f(7) dr. (8)

Using integration by parts, we deduce

" on B (Ingz —Inga)" ,_ L lnN ln,.C ) 1
(w2 620 () = =) i+ [ e (9)

Repeating the same procedure n — 2 times, we arrive at item (2). ]

Lemma 3.4. 1. Fora >0 and 3 > 0, we have

(ﬁ]li(lnn t —In, a)ﬂ_l) () = I’(;(f)a)(lnnt —In, )Pt (10)
2. Fora < n and 8 > 0, we have
(a+]Dg(ln,{t — In, a)ﬁ’l) (x) = F(g(f)a)(lnﬁt —In,a)’"". (11)

Proof. With the change of variables z = BsT=lxa 34 with the help of the Beta function

Ing z—1Ink a

B(z,y) = /01 21 —=2)"dr = (U

@ INTERMATHS Vol. 3, No. 1, 2022, pp. 37 - 49



Fractional operators with Kaniadakis logarithm kernels

Ana Paula Perovano; Fernando Santos Silva 42
we obtain
( +I(Ing t — In a)ﬂ_l) (x) = ! /:C (Ingz —In, 7)" " (In, 7 — In a)ﬂ_li
atdg K K F(O[) ; K K K K g,.;(T)
(In,  — In, a)?+o—! /1 5.1 1
= 1—2)""d
() , & (1m2)Tde
~ (Ingz —1In, a)Pte 1 T(B)Na)
N () L6+ a)
I'(B) _
= | —1 fta—1 12
F(ﬁ_'_a)(nﬁx nfﬂa’) ( )
The second formula is proven is a similar way. [

Lemma 3.5. Letn € Z* and let f be a continuous function, n times derivable in [a,b]. Then
5" f = (foexp,)™oln, inJa,b). (13)

Proof. We prove the result by induction. The case n = 1 is straightforward. Suppose (13) is
satisfied, then

(f oexp, )™ oln, = ((67f) 0 exp,) o In,,

= [(li/ (52f)'> o eXpH] oln,
= ontyf,

]

Let 1 < p < oo and define the space of p-integrable functions with respect to the Kani-
adakis logarithm:

LP(a,b) == {f 0,8 = C, /ab ()P dIn,(s) < oo} . (14)

Remark 3.6. 1. If 1/g.(z) is bounded on [a,b], then LP(a,b) = LP(a,b).
2. In, is invertible and exp, € C"(a, b], with the notation & = In,(¢).

Corolary 3.7. Let 1 <p < oo andn € Z*. Then

f € I2(a,b) <= foexp, € L¥(a,b),

f € AC"[a,b] <= foexp, € AC"[a,b].
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Proof. The first assertion is immediate. Denote z = f o exp,, then we obtain by Lemma 3.5

2z € AC"[a,b] & Fc e Randy € L'(a,b)st. 2" V(@) =c+ [ o(s)ds, VI € a,b]

Ing, x
oln,z=c+ o(s)ds, Yz € la,b
Ing a
In, x
S f(r) =c+ o(s)ds, YV z € la,b

Ing a

& o flr) =c+ /z(ln/n s)polng(s)ds, Ve la,]

PN Z(nfl)

& f e ACa,b].

]

Theorem 3.8. Let o > 0 and n = [o] + 1. Then for any u € L”(a,b), 1 < p < oo, we have
i) ot I3 f = (I3 (f o exp,)) o Ing, Vf € ACEa, 0],

ii) o+ D2f = (FEDZ (f o exp,)) o In,

Proof. Let f € LP(a,b). Then, using Corollary 3.7, we have f o exp, € LP(a,b) and hence
I¢ (f o exp,,) is well defined on [a, b]. It follows that for a.e. = € [a, b]

a*lif(x) =

- /am(ln,{ x— &) f(exp,(£))dé = I (f oexp,.) (In, x).

Now, let f € AC"[a,b]. Then, we have by Corollary 3.7 that f o exp, € AC[a,b] and hence
RLDe (£ o exp, ) is well defined on [a, b]. It follows by i) and Lemma 3.5 that for a.e. z € [a, D]

D) = (1) @)= () [(170) oo )

_ (i) (127 (f o exp,.)] (In )

— RLD2 (f o exp,.) (In, ).

4 Boundedness in the space /?(a,b)

In this section, we define the space where the with respect to the Kaniadakis logarithm are

bounded and present some properties of these operators.

Theorem 4.1. Let p > 1. Then, the fractional integral operator with respect to the Kani-
adakis logarithm ,+1% is bounded in L% (a,b):

(b—a)

Ie < K, a th K= 5——5-
o+ Tl ez oy < Kl Fllezae  wi Pla+1)
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Proof. First, remark that ||f o In, | z2(p) = [|f|l1s@p), with the notation £ = 1(€). Using
Proposition 3.8 and the continuity of the operator IS,

(b—a)*

I2 flloran < K| fllos@p  with K = ———~
MG fllerapy < Kl flleoap  wi T(a+1)

one obtain

lar 2 20y = 7 (£ 0 expo)) o el oy
= ||z (f OeXpm)HLP(a,l;)
< Ki|lf o expll o
= K, ||f||L£(a7b) :

]

Theorem 4.2. (semi-group law) Let « > 0 and 5 > 0. Then, for any 1 < p < oo and
u € Ly(a,b)

1 o+ I8 i 10 f = 4 IXHA .
2. D¢ L0 f = f.
3. a+]DEa+]Igf = a+]1g*ﬁﬂﬁf Va>p.

4. Let m € Z*, then
AL ifm<a

DY f if m > a.

oI f = {

Proof. We only prove the first assertion, since the proofs of the other identities follow a
similar idea. Let f € L?(a,b), then foexp, € LP(a,b). It follows from Lemma 2.3 in [7] and
Proposition 3.8 that for a.e. = € [a, b

12 10 f () = 12 (o I2f ) 0 exp,,) (In, z)
=12 (I2(f o exp,)) (In, z)
= I*P(f o exp,)(In, x)
= o I f(2).
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5 Caputo type fractional derivative operator

Definition 5.1. Let @ > 0 and n = [a] 4+ 1. The x-Caputo fractional derivative of order a of
f € C"[a,b] is defined by

€D y(t) = o+ 12 (d1y) (t)
1 ' (5ry) () ds
_ / ( . (15)

I'(n—a) In, t —In, s)e="*l g,.(s)

Define the space
ACtla,b] = {y : [a,b] = C st. 67"y € ACla,b]}.
Lemma 5.2. Let n € Z*. Then we have the following embedding
C"[a,b] C AC[a,b] C C" 'a,b] C --- C C'la,b] C ACkla,b] C Cla, b]
where C"[a, b] denotes the set of continuously differentiable functions up to order n.

Proof. The proof is direct. [

Theorem 5.3. Let y € AC[a,b]. Then for a.e. t € [a, b
D y(t) = o+ I (31y) (1).
In particular, ©,D" y = 6" for any n € Z*.

Proof. Using Corollary 3.7, we have y o exp, € AC"[a,b]. It follows from [7, Theorem 2.1],
Proposition 3.8 and Lemma 3.5 that for a.e. t € [a, D]

D2 y(t) = “Dg (y o exp,) (In. 1)
=1 ((y o expn)(")) (In, t)
= 177" ((05y) o exp,.) (In, t)
= ot IE (05y) (1)

Theorem 5.4. (Composition) Let a > 0 and n = [a]. Then, for u € Cla, b]

D a (I5y) (1) = y(b),
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and for y € AC}.[a, b]
n—1 5]‘ .
ot I (CalDi y) ) =ylt) = > (”y,)(a)(ln,{t —In, a)].
Proof. Since 1) is continuous, then y o exp,. is also continuous. The rest of the proof is an

consequence of Theorem 3.8, Lemma 3.5 and Corollary 3.7. O

Theorem 5.5. ©,D%y € Cla,b]. In particular, if o ¢ Z* then €, D% y(a) = 0.

Proof. Since exp, € C"[a,b] then y o exp, € C"[a,b]. Using that C"[a,b] C AC"[a,b], we
obtain by Theorem 2.2 in [7] and Proposition 3.8 that ¢, D%y = (CD(ELY (yo expn)> oln, €
Cla,b]. Moreover, we have from Theorem 2.2 in [7] that D2 (yoexp,) (@) = 0 if « & Z.
Applying again Proposition 3.8 yields %, D% y(a) = 0. O

Lemma 5.6. Let o > 0. Then

¢ po s T'(A+p) f—a

aIDH<1n,§t—1n,$a) —W(lnﬁt—lnﬁa) s ﬁ>n—1,

Ca]])ﬁCL(ln,{t—ln,{a)k:O, k=0,1,...,n—1.
Proof. A direct consequence of Theorem 3.8. 0

6 Fractional differential equations

Let & > 0 and n = [o] + 1. Consider the following fractional differential system

DY y(t) = f(t,y(t), te€la,b]
(16)
a+]Dg*k y(a) =ap, k=1,...,n—1, %E}na+ﬂz—a y(t) — a,.

with f a given function and a; € R for £k = 1,..., n. We have the following integral

representation of the solution of (16).

Theorem 6.1. Let U C R be an open set and assume f : (a,b] x U — R is a function such
that t — f(t,-) € L.(a,b). Then a functiony € L.(a,b) is a solution of (16) if and only if

y is a solution of the non-linear second kind Volterra integral equation

< e g) Lt f(s,y(s)) ds
2:: —J+1)(ln“t ) +F(a)/a ( e

In, t —In, s)

with a; = +D2 *y(a) forj =1,. —1, and a, = liﬁmadl:fay(t)-
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Proof. Using Proposition 3.8, one can show that y is a solution of (16) if and only if z =

y o exp,, is a solution of the system

RS (2) = Fle,2(2)), @ € 0.5
(18)
RLpe~k (@) =ap, k=1,...,n—1, h_r)n[” Y z2(x) = ap.
with F(z,y) = f(exp, z,y). Noticing that t — f(t,-) € LL(a,b) & x — F(z,-) € L'(a,b)
and u € L} (a,b) & z = yoexp, € L'(a,b), and using Theorem 3.1 in [7], we deduce that z

is a solution of (18) if and only if = satisfies for a.e. x € [a, b]

Zn: Tz j =y ( C_L)a*j n F(la) /; F(s, ngzi is. (19)

j=1 (:C -

Finally, the result follows by taking x = In, ¢ in equation (19). O
Define the space
L2(a,b) == {p € Li(a,b), o+D2p € Li(a,b)} (20)

where Ll (a,b) is given in (14). Then we have the following result.

Theorem 6.2. Let U C R be an open set and let f : (a,b] x U — R be a function such that
t — f(t,-) € LL(a,b). Assume that f fulfills a Lipschitz condition with respect to its second
variable. Then the Cauchy problem (16) admits a unique solution y € L*(a,b).

Proof. We have established in Proposition 6.1 that y is a solution of (16) if and only if
z =y oexp, is a solution of (18). Since (t,y) — F(t,y) := f(exp, t,y) is Lipschitzian with
respect to its second variable, we obtain from Theorem 3.3 in [7] that the system (18) admits a
unique solution z € L%(a, b) := {gp € L'(a,b), ™Dy € L'(a, B)} Finally, the result follows
by noticing that z € L%(a,b) <> y = zoln, € Li(a,b). O

Corolary 6.3. A function u € L.(a,b) is a solution of (16) if and only if y = z o In,, with
z € L'(a,b) is a solution of the Riemann-Liouville fractional differential system

RLDay(t) = F(t, 2(t)), te€ [a,b
RLp2y(a) =aj, j=1,...,n—1, 2legn['” Y 2(t) = ay.

with the notation & = (&) and F(t,z) = f()='(t), z).

Let a > 0. Consider the following x-Caputo fractional differential system with respect to
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another function
DY y(t) = f(t,y(t), tela,b]

(21)
(6%y) (a) =a;, j=0,1,...,n—1

with f a given function and a; € R for j =0, 1,..., n — 1.

Theorem 6.4. A function y € AC|a,b] is a solution of (21) if and only if y = z o In,, with
z € AC"[a,b] is a solution of the k-Caputo differential system

“Dez(t) = F(t,2(t), t€la,b]
(22)
@) =a;, j=0,1,...,n—1

with F(t,z) = f(exp,t, ).

Proof. A direct consequence of Theorem 3.8, Lemma 3.5 and Corollary 3.7. O

Theorem 6.5. Assume f is continuous over [a,b] x R. Then a function y € ACj|a,b] is a
solution of (21) if and only if y is a solution of the of the non-linear second kind Volterra

integral equation

with a; = (62y) (a) for j =0, 1,..., n— 1.
Proof. The proof can be implemented by using Theorems 5.4 and 4.2, and Lemma 5.6. [

7 Concluding remark

The paper presents new fractional integral operators containing Kaniadakis logarithm func-
tions in their kernels. We already know that we can deduce Hadamard integrals for the special
cases of k. We show that a Cauchy problem is equivalent to the Volterra integral equation
of the second kind. The mathematical analysis for the solutions of k-Caputo fractional dif-
ferential equations can be deduced directly from their Caputo counterparts. The existence of
new generalized integral operators may be useful in several applications of fractional calculus

in science and engineering.
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