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Abstract: The logic PM4N was introduced by Jean-Yves Beziau [1] as a modal and 4-valued system.
In this introductory paper, the author presented the system from a matrix logic with four values
disposed in a Boolean algebra with a modal operator for the notion of necessity. From that matrix
semantics, the paper shows some valid results and stresses some motivations of the matrix semantics
and of the system PM4N. In this paper we develop some additional aspects of that logic and present
two deductive systems for it, a simple system of tableaux and a sequent calculus.
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1 Introduction

Beziau [1] introduced the logic PM4N as a basic 4-valued and modal logic. The
system was proposed to keep many important modal notions.

In this paper we propose some developments on that logic, considering details of its
matrix semantics, preparing adequate deductive systems for PM4N and showing several
modal laws valid in PM4N, but also laws and rules not valid in this 4-valued system.

The layout of our paper is as follows. In Section 2, we remember the 4-valued semantic
of PM4N, some motivations and mathematical aspects of that model. In Section 3, we
elaborate a tableaux system for PM4N and show the validity of many modal laws. In
Section 4, we introduce a sequent calculus for PM4N. Finally, some conclusions from
this work are drawn in Section 5.

2 The four-valued semantic

The logic PM4N is built over a propositional language determined by the set of
operators L = {∨,¬,□}, in which the propositional operators ∨, ¬ and □ denote,
respectively, the notions of disjunction, negation and necessity.

We will use the same symbols from the propositional language over the semantic
structure for PM4N.

In the introductory paper [1], the author considered as basic also the operator ∧, but
since ∧ and ∨ are inter-definable in PM4N, we have considered only the three operators
above.
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Like [1], the original semantic for PM4N is defined by the following matrix semantics:

MPM4N = ({0, n, b, 1},∨,¬,□, {b, 1}),

such that b and 1 are the designated values, and 0 and n are the non-designated values.
Remark 2.1. The set of designated or true values is denoted by D = {b, 1}.

Before presenting the tables of these operators let us show the algebraic motivation,
since we think that with these elements the next developments will follow clearly.

We must consider these four values disposed in a Boolean algebra of four elements as
this one:

1
⧸ ⧹

n b

⧹ ⧸
0

Now it is good to think about the operators. The disjunction corresponds to the
supremum, that is, for x, y ∈ {0, n, b, 1}, the element x ∨ y = sup{x, y}. The negation
corresponds to the boolean complement, and the necessitation that only the value 1 is
necessarily true.

So, the meaning of the basic operators are in Figure 1.
Fig. 1. Tables for the operators ∨, ¬ and □

∨ 0 n b 1

0 0 n b 1
n n n 1 1
b b 1 b 1
1 1 1 1 1

¬
0 1
n b
b n
1 0

□

0 0
n 0
b 0
1 1

Source: Adapted from [1]

Beziau [1] used the symbols {0−, 0+, 1−, 1+} for {0, n, b, 1}, and some papers have
used the set {f, n, b, t}. Our choice is also frequent in the literature about logics with
four values.

We have a four-valued logic and as usual the values 0 and 1 represent the falsun and
the verun, but b and n are two complementary values that are not in a linear order.

Some papers, as in Font [2] and Omori and Sano [3], use the intuition that n means
neither 0 and nor 1, and b means both 0 and 1. Beziau considered 0 as necessarily false,
n as possibly false, b as possibly true, and 1 as necessarily true.

This negation is a type of classical negation, for it maps true values into false values
and maps false values into true values.

Following some motivations in algebraic developments on Belnap’s four-valued logics
[4] and in the literature about algebraic and mathematical logics [5], [6], [7] and [8], we
present additional algebraic aspects of PM4N.
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Of course, the algebraic structure of PM4N is isomorphic with the Boolean algebra of
four elements, P(2) = {∅, {0}, {1}, {0, 1}}, generated by a set of two elements 2 = {0, 1}.

Another way to see this partial order is to consider the isomorphic structure in
Z2 × Z2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, considering that in Z2, 1 = [1] and 0 = [0], odd
and even, respectively.

1 = (1, 1)
⧸ ⧹

n = (0, 1) b = (1, 0)
⧹ ⧸
0 = (0, 0)

With the following operations:
(x, y) ∧ (z, w) = (x.z, y.w)
∼ (x, y) = (1 − x, 1 − y) and
(x, y) ∨ (z, w) = ∼ [∼ (x, y) ∧ ∼ (z, w)].
Thus, we can present the formal matrix semantics of PM4N.
We write V ar(PM4N) = {p1, p2, p3, ...} for the set of the propositional variables of

PM4N and For(PM4N) for the set of the formulas of PM4N, defined in the usual
way.

Definition 2.2. A restrict valuation for PM4N is a function

v : V ar(PM4N) → {0, n, b, 1}.

Definition 2.3. A valuation for PM4N is a function that extends, in an unique way,
the restrict valuation for the whole set For(PM4N), according to the matrix above.

Definition 2.4. A formula φ ∈ For(PM4N) is valid, according to MP M4N , if, for
every PM4N-valuation v, v(φ) ∈ D.

Definition 2.5. If Γ∪{φ} ⊆ For(PM4N), then Γ implies logically φ, or φ is a semantic
consequence of Γ, when, for every PM4N-valuation v, if v(Γ) ⊆ D, then v(φ) ∈ D.

Thus, we have that for every valuation v:

Γ ⊨ φ ⇐⇒ (v(Γ) ⊆ D ⇒ v(φ) ∈ D).

Based on the literature of many-valued logics [9], [10] and besides these primitive and
basic operators, we can define the following operators in PM4N:

Possibility: ♢x =def ¬□¬x
Conjunction: x ∧ y =def ¬(¬x ∨ ¬y)
Conditional: x → y =def ¬x ∨ y

Biconditional: x ↔ y =def (x → y) ∧ (y → x)
Consistency: ◦x =def □x ∨ ¬♢x
Inconsistency (or Contingency): •x =def ♢x ∧ ¬□x
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Fig. 2. Tables for the new operators defined from the primitive and basics operators

♢

0 0
n 1
b 1
1 1

∧ 0 n b 1

0 0 0 0 0
n 0 n 0 n
b 0 0 b b
1 0 n b 1

→ 0 n b 1

0 1 1 1 1
n b 1 b 1
b n n 1 1
1 0 n b 1

↔ 0 n b 1

0 1 b n 0
n b 1 0 n
b n 0 1 b
1 0 n b 1

◦
0 1
n 0
b 0
1 1

•
0 0
n 1
b 1
1 0

∼
0 1
n n
b b
1 0

Source: By the authors

Paraconsistent negation: ∼ x =def ¬x ↔ ◦x
The meanings of these new operators are given by the Figure 2.
By the tables for ¬, ∧, ∨ and the definition of disjunction, the De Morgan’s laws hold:

¬(x ∨ y) = (¬x ∧ ¬y) and ¬(x ∧ y) = (¬x ∨ ¬y).

The operator of possibility is defined as usual in the context of modal logics. It is
a type of dual of the necessity, and the interpretation is that if a proposition is not
necessarily false, then it is possible.

The conjunction is defined by the De Morgan laws and if taken the conjunction as
the basic operator, then we could define the disjunction from it. The interpretation is
given by the infimum between the two values.

The conditional operator or implication is defined as in the classical case by the
negation of antecedent or the consequent; and the biconditional is a double conditional.

In modal logics, a possible but not necessary proposition is called contingent and in
the logic PM4N, its meaning coincides with the meaning of inconsistency of logics of
formal inconsistency (LFI) as we can see in Carnielli, Coniglio and Marcos [11], Carnielle
and Marcos [12] and Carnielli, Marcos and Amo [13]. The operators of consistency and
inconsistency are complementary and an interpretation for the consistency is that the
classical values {0, 1} are consistent and the non-classical {n, b} are not consistent.

Finally, the negation ∼ is paraconsistent [14] because it takes the true value b into b,
and the false value n into n. So in some cases a proposition and its negation can be true.

Given the tables for □, ♢ and ¬ we have the following equivalences:

□¬x = ¬♢x and ♢¬x = ¬□x.

We can see these modal operators in a hexagon of oppositions as the following figure:

◦x
⧸ ⧹
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□x □¬x = ¬♢x
| |
| |

♢x ♢¬x = ¬□x
⧹ ⧸

•x

We can see the oppositions in the diagonals between necessary and non-necessary,
possible and impossible, and contingent and non-contingent, but we do not have a global
order of deduction in the figure. In the vertical lines, the deduction goes top-down and
in other lines the deduction goes down-top.

Another interesting operation that can be defined in PM4N is the following addition:
Ring addition: x⊕ y =def (x ∧ ¬y) ∨ (¬x ∧ y), with the table:

Fig. 3. Table for the operation ⊕

⊕ 0 n b 1

0 0 n b 1
n n 0 1 b
b b 1 0 n
1 1 b n 0

Source: By the authors

We can observe that 0 is the neutral element for ⊕, each element is its own symmetric,
and the operation is commutative.

Finally, we can show that ({0, n, b, 1},⊕,∧, 0, 1) is a commutative ring with identity
element 1.

As an observation, ({0, n, b, 1},⊕, 0, 1) is the Klein’s group of four elements.

3 A tableaux system for PM4N

From the matrix model for PM4N we elaborated a completely adequate tableaux
system for this logic [15] and [16].

We denote this system by TPM4N.
We have tried tableaux with fewer than four ramifications as usual for four-valued

logics. In many cases we succeeded, but not always.
As a first step we will take the following notations: f ∈ {0, n} for false values, and

t ∈ {b, 1} for true values.
We will use signed formulas as k ψ to indicate that the formula ψ has a value

k ∈ {0, n, b, 1}. And we will denote the Boolean complement of k ∈ {0, n, b, 1} by k′.

f − t expansions:

f φ

0 φ | n φ

t φ

b φ | 1 φ
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Negation:

k ¬φ
k

′
φ

Conjunction:

0 φ ∧ ψ

0 φ | 0 ψ | b φ | n φ
| | n ψ | b ψ

n φ ∧ ψ

n φ | 1 φ
n ψ | 1 ψ | n ψ

b φ ∧ ψ

b φ | 1 φ
t ψ | b ψ

1 φ ∧ ψ

1 φ
1 ψ

Disjunction:

0 φ ∨ ψ

0 φ
0 ψ

n φ ∨ ψ

n φ | 0 φ
f ψ | n ψ

b φ ∨ ψ

b φ | 0 φ
b ψ | 0 ψ | b ψ

1 φ ∨ ψ

1 φ | 1 ψ | b φ | n φ
| | n ψ | b ψ

Conditional:

0 φ → ψ

1 φ
0 ψ

n φ → ψ

b φ | 1 φ
f ψ | n ψ

b φ → ψ

n φ | 1 φ
0 ψ | b ψ | b ψ

1 φ → ψ

0 φ | 1 ψ | n φ | b φ
| | n ψ | b ψ

And we are particularly interested in the modal operators, for the author of [1] at
introducing PM4N desired to compare it with the modal logic S5.

So using centrally the following rules we can show some laws of S5 [17] that are valid
for PM4N, but also several results of rupture.

Modal operators:

1 □φ
1 φ

0 ♢φ
0 φ

0 □φ
f φ | b φ

1 ♢φ
n φ | t φ

Definition 3.1. A branch of a tableau of TPM4N is closed if the marked formulas occur
in the path:

(i) k1 φ and k2 φ, for any formula φ and k1 ̸= k2;
(ii) n □φ or b □φ, for any formula □φ;
(iii) n ♢φ or b ♢φ, for any formula ♢φ.

The f − t expansions were introduced to reduce the length of the trees. From the
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item (i) above, branches with f ψ and t ψ are closed.

Definition 3.2. A tableau of TPM4N is closed if all of its branches are closed.

The proofs and deductions in TPM4N are as the usual. We denote that a formula φ is
deduced from Γ in the tableau system TPM4N by Γ ⊩ φ.

The deduction Γ ⊩ φ is Tarskian, that is, (i) if φ ∈ Γ, then Γ ⊩ φ; (ii) if Γ ⊩ φ and
Γ ⊆ Σ, then Σ ⊩ φ; (iii) if Γ ⊩ φ and Σ ∪ {φ} ⊩ ψ, then Γ ∪ Σ ⊩ ψ.

Now, considering the tableaux system above we can show the validity of several modal
sentences, but also the non-validity of other central modal results.

(a) K: ⊩ □(φ → ψ) → (□φ → □ψ)

f □(φ → ψ) → (□φ → □ψ)

0 □(φ → ψ) → (□φ → □ψ)
1 □(φ → ψ)
0 □φ → □ψ

1 φ → ψ

1 ψ
1 □φ
0 □ψ
1 φ

f φ b φ

0 φ
1 □φ
0 □ψ
1 φ

n φ
n ψ

1 □φ
0 □ψ
1 φ

b φ
b ψ

1 □φ
0 □ψ
1 φ

n □(φ → ψ) → (□φ → □ψ)

b □(φ → ψ) 1 □(φ → ψ)
n □φ → □ψ

b □φ 1 □φ
n □ψ

× ×

×
× ×

×

×
×

(b) D: ⊩ □φ → ♢φ

f □φ → ♢φ

0 □φ → ♢φ
1 □φ
0 ♢φ
1 φ
0 φ

n □φ → ♢φ

b □φ 1 □φ
n ♢φ

×

×
×

(c) T: ⊩ □φ → φ
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f □φ → φ

0 □φ → φ
1 □φ
0 φ
1 φ

n □φ → φ

b □φ 1 □φ
n φ
1 φ×

×

×

(d) T’: ⊩ φ → ♢φ

f φ → ♢φ

0 φ → ♢φ
1 φ

0 ♢φ
0 φ

n φ → ♢φ

b φ
f ♢φ

0 ♢φ
0 φ

n ♢φ

1 φ
n ♢φ

×

×
×

×

(e) 4: ⊩ □φ → □□φ

f □φ → □□φ

0 □φ → □□φ
1 □φ

0 □□φ
1 φ

f □φ b □φ

n □φ → □□φ

b □φ 1 □φ
n □□φ

× ×

×
×

(f) 4’: ⊩ ♢♢φ → ♢φ
(g) 5: ⊩ ♢φ → □♢φ
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f ♢φ → □♢φ

0 ♢φ → □♢φ
1 ♢φ

0 □♢φ

f ♢φ b ♢φ

n ♢φ → □♢φ

b ♢φ 1 ♢φ
n □♢φ

× ×

×
×

(h) 5’: ⊩ ♢□φ → □φ
As consequence of the previous laws, we have:
(i) B: ⊩ φ → □♢φ

(j) B’: ⊩ ♢□φ → φ

The distributivity of modal operators to the conjunction and disjunction would be
another interesting property to verify.

From the definition of the biconditional we can divide the formula below into two
sub-formulas and ascertain their validity.

(k) R: ⊩ □(φ ∧ ψ) ↔ □φ ∧ □ψ

M: ⊩ □(φ ∧ ψ) → □φ ∧ □ψ

f □(φ ∧ ψ) → □φ ∧ □ψ

0 □(φ ∧ ψ) → □φ ∧ □ψ
1 □(φ ∧ ψ)
0 □φ ∧ □ψ

1 φ ∧ ψ
1 φ
1 ψ

0 φ 0 ψ b φ
n ψ

n φ
b ψ

n □(φ ∧ ψ) → □φ ∧ □ψ

b □(φ ∧ ψ) 1 □(φ ∧ ψ)
n □φ ∧ □ψ

1 φ ∧ ψ
1 φ
1 ψ

n □φ 1 □φ
n □ψ

× ×
× ×

×

×
×

C: ⊩ □φ ∧ □ψ → □(φ ∧ ψ)
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f □φ ∧ □ψ → □(φ ∧ ψ)

0 □φ ∧ □ψ → □(φ ∧ ψ)
1 □φ ∧ □ψ
0 □(φ ∧ ψ)

1 □φ
1 □ψ
1 φ
1 ψ

f φ ∧ ψ

0 φ ∧ ψ

0 φ 0 ψ b φ n φ

n φ ∧ ψ

n φ 1 φ
n ψ

b φ ∧ ψ

b φ 1 φ
b ψ

n □φ ∧ □ψ → □(φ ∧ ψ)

b □φ ∧ □ψ

b □φ 1 □φ
b □ψ

1 □φ ∧ □ψ
n □(φ ∧ ψ)

× × × × ×
×

×
×

×
×

×

(l) R’: ⊩ ♢φ ∨ ♢ψ ↔ ♢(φ ∨ ψ)
(m) ⊮ □(φ ∨ ψ) → □φ ∨ □ψ

(n) ⊮ ♢φ ∧ ♢ψ → ♢(φ ∧ ψ)
For (m) and (n) we can just take the values v(φ) = b and v(ψ) = n.
However, as its mentioned, the two systems must be different. We begin with the

non-validity of the Necessitation Rule.
(o) RN: φ ⊮ □φ, even when φ is valid in PM4N.

t φ
f □φ

b φ

0 □φ

f φ b φ

n □φ

1 φ

0 □φ

f φ b φ

n □φ

×

×

× ×

×

There is an open branch, exactly when v(φ) = b. So the tableau is not closed only
when v(φ) = b, and if the formula φ takes only the value 1, then it is necessary and the
rule can be applicable.

(p) RM: φ → ψ ⊮ □φ → □ψ
For v(φ) = 1 and v(ψ) = b, we have 1 → b and 1 → 0, then v(φ → ψ) = b and

v(□φ → □ψ) = 0.
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(q) RM’: φ → ψ ⊮ ♢φ → ♢ψ
For v(φ) = n and v(ψ) = 0, we have n → 0 and 1 → 0, then v(φ → ψ) = b and

v(♢φ → ♢ψ) = 0.
The non-validity of these rules makes the conception of this logic a little estrange. A

valid conditional does not transfer its validity to these several cases.
In a further paper we must to compare the set of theorems of PM4N and S5, the

modal logic of equivalence relation.
But, for this moment we are just interested in the deductions systems for PM4N.

Thus, in the next section we construct a sequent calculus for this logic.

4 From matrixes to sequents

In this section we will introduce a sequent system for PM4N, following principally
[18] and [19].

We start considering the matrix semantics of PM4N:

MPM4N = ({0, n, b, 1},∨,¬,□, {b, 1}),

with D = {b, 1}.

Definition 4.1. A sequent for PM4N is a figure Λ of the type:

Λ0 | Λn ⇒ Λb | Λ1,

such that for x ∈ {0, n, b, 1}, each Λx is a finite sequence of formulas. Each Λx is a
component of Λ.

Some of these components can be the empty sequence ∅.
If Λ and Λ′ are sequences, then Λ,Λ′ is their union respecting each component.
The sequence Λ0 | Λn is the antecedent and the sequence Λb | Λ1 is the succedent of Λ.
As usual, we think of the elements of the antecedent as a conjunction and the elements

of the succedent as a disjunction.
As the figure suggests, a sequent must hold if some element of the antecedent is false,

or if some element of the succedent is true.

Definition 4.2. A valuation v satisfies a sequent Λ or is a model of Λ if there is
x ∈ {0, n, b, 1} and φ ∈ Λx such that v(φ) = x.

We denote that v is a model of Λ by v ⊨ Λ.
Sometimes we can abuse this notion and say that the valuation v satisfies the

component Λx, when φ ∈ Λx and v(φ) = x.

Definition 4.3. The sequent Λ is satisfiable if there is a valuation v so that v ⊨ Λ.

Definition 4.4. The sequent Λ is valid if every valuation v satisfies Λ.
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For Φ ∪ {φ} ⊆ For(PM4N) and a valuation v : For(PM4N) → {0, n, b, 1} we
consider: Φ0 = {ψ ∈ Φ : v(ψ) = 0}, Φn = {ψ ∈ Φ : v(ψ) = n}, {φ}b = {φ}, if v(φ) = b
or {φ}b = ∅, if v(φ) ̸= b, and {φ}1 = {φ}, if v(φ) = 1 or {φ}1 = ∅, if v(φ) ̸= 1.

In this case, if v(φ) = 1, then the sequent Φ0 | Φn ⇒ ∅ | {φ} is satisfiable.
Considering that a sequent is composed by a finite number of formulas, then the set

Φ in the next proposition must be finite too.

Proposition 4.5. Φ ⊨ φ iff the sequent Φ0 | Φn ⇒ {φ}b | {φ}1 is valid.
Proof: If Φ ⊨ φ, then every model of Φ is also a model of φ. Thus, for a generic
valuation v such that v(Φ) ⊆ D, we have that v(φ) = b or v(φ) = 1. In one way, the
sequent Φ0 | Φn ⇒ {φ}b | {φ}1 is valid.

If Φ ⊭ φ, then there exists a valuation v such that v(Φ) ⊆ D and v(φ) = n or v(φ) = 0.
For this valuation v we have that Φ0 | Φn ⇒ {φ}b | {φ}1 is not valid.

As {¬¬φ} ⊨ φ, we have that {¬¬φ} | {¬¬φ} ⇒ {φ} | {φ} is valid, for any valuation
v, if v(φ) = x, then v satisfies Λx.

As {□φ} ⊨ φ, we have that {□φ} | {□φ} ⇒ {φ} | {φ} is valid, because for any
valuation v, if v(φ) = 1, then v satisfies Λ1 and if v(φ) ̸= 1, then v satisfies Λ0.

The sequent {φ} | {φ} ⇒ {□φ} | {□φ} is not valid because if v(φ) = b, then none of
the components is valid.

From the Gentzen tradition and according to Zach [19], we must present valid axioms
and structural rules that preserve validity.

To be valid in this systems it is enough a valuation v such that there is a φ ∈ Λx with
v(φ) = x.

So the axioms are of the form {φ} | {φ} ⇒ {φ} | {φ}.
For any valuation v, one of the components of Λ is valid.
In the following we will not use the curly brackets anymore.
The rules must be such that if the premisses (upper sequents) are valid, then its

consequence (lower sequent) is valid too.
For the structural rules, we will present the cases in the second component, but the

rules are correct in any component.

Weakening: Λ0 | Λn ⇒ Λb | Λ1

Λ0 | Λn, φ ⇒ Λb | Λ1

Contraction: Λ0 | Λn, φ, φ ⇒ Λb | Λ1

Λ0 | Λn, φ ⇒ Λb | Λ1

Exchange: Λ0 | Λn, φ, ψ ⇒ Λb | Λ1

Λ0 | Λn, ψ, φ ⇒ Λb | Λ1

Cut: Λ0 | Λn, φ ⇒ Λb | Λ1 Λ0 | Λn ⇒ Λb, φ | Λ1

Λ0 | Λn ⇒ Λb | Λ1

In all of these rules if the premisses are valid, then their consequences are also valid.
The cut is a binary rule with two premisses and, if both are valid, the valuation that

operates does not depend on φ and the lower sequent is valid too.
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Now we will present the sequent rules for the basic operators ¬,□ and ∨ and justify
that these rules preserve validity. These rules introduce operators in the sequents.

Sequent rules:

Negation

(R1) Λ0 | Λn ⇒ Λb | Λ1, φ

Λ0,¬φ | Λn ⇒ Λb | Λ1
(R2) Λ0 | Λn ⇒ Λb, φ | Λ1

Λ0 | Λn,¬φ ⇒ Λb | Λ1

(R3) Λ0 | Λn, φ ⇒ Λb | Λ1

Λ0 | Λn ⇒ Λb,¬φ | Λ1
(R4) Λ0, φ | Λn ⇒ Λb | Λ1

Λ0 | Λn ⇒ Λb | Λ1,¬φ

For any valuation v, if the premisses are valid, then the consequences are also valid,
just observing that if v(φ) = x, then v(¬φ) = x′.

All of them are unary rules, with exactly one upper sequent. For the other operators
will occur rules with more than one upper sequent, and in these cases we consider exactly
one of them as valid.

Necessity

(R5) Λ0 | Λn ⇒ Λb | Λ1, φ

Λ0 | Λn ⇒ Λb | Λ1,□φ

(R6) Λ0, φ | Λn ⇒ Λb | Λ1; Λ0 | Λn, φ ⇒ Λb | Λ1; Λ0 | Λn ⇒ Λb, φ | Λ1

Λ0,□φ | Λn ⇒ Λb | Λ1

For any valuation v, if v(φ) = 1, then v(□φ) = 1, and if v(φ) ̸= 1, then v(□φ) = 0.
The two rules preserve validity.

The next rules, for the disjunction, can have up to four sequents as premisses.

Disjunction

(R7) Λ0 | Λn ⇒ Λb | Λ1, φ; Λ0 | Λn ⇒ Λb | Λ1, ψ; Λ0 | Λn, φ ⇒ Λb, ψ | Λ1; Λ0 | Λn, ψ ⇒ Λb, φ | Λ1

Λ0 | Λn ⇒ Λb | Λ1, φ ∨ ψ

(R8) Λ0 | Λn ⇒ Λb, φ, ψ | Λ1; Λ0, ψ | Λn ⇒ Λb, φ | Λ1; Λ0, φ | Λn ⇒ Λb, ψ | Λ1

Λ0 | Λn ⇒ Λb, φ ∨ ψ | Λ1

(R9) Λ0 | Λn, φ, ψ ⇒ Λb | Λ1; Λ0, φ | Λn, ψ ⇒ Λb | Λ1; Λ0, ψ | Λn, φ ⇒ Λb | Λ1

Λ0 | Λn, φ ∨ ψ ⇒ Λb | Λ1

(R10) Λ0, φ, ψ | Λn ⇒ Λb | Λ1

Λ0, φ ∨ ψ | Λn ⇒ Λb | Λ1
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If the premisses for some of these rules are valid, then for any valuation v exactly one
component of upper sequents must be valid. In any case, using the table for disjunction
the consequence must be valid too.

So the axioms of this sequent system are valid and the rules preserve the validity.

Definition 4.6. The proof of a sequent Λ0 | Λn ⇒ Λb | Λ1 in this calculus is a tree of
sequents such that every topmost sequent is an axiom, all other sequents in the tree are
obtained from the sequents immediately above it using one of the rules, and the sequent
Λ0 | Λn ⇒ Λb | Λ1 is the end-sequent, at the root of the tree.

Definition 4.7. A sequent Λ is provable if it is the end-sequent of some proof.

Examples:

(a) ¬¬φ | ¬¬φ ⇒ φ | φ

φ | φ ⇒ φ | φ (Axiom)
∅ | ∅ ⇒ ¬φ, φ | ¬φ, φ (R3) and (R4)
¬¬φ | ¬¬φ ⇒ φ | φ (R1) and (R2)

(b) □φ | □φ ⇒ φ | φ

φ | φ ⇒ φ | φ (Axiom)
□φ | ∅ ⇒ φ | φ (R6)

□φ | □φ ⇒ φ | φ (Weakening)

(c) □φ ∨ □ψ | ∅ ⇒ ∅ | □(φ ∨ ψ)

φ | φ ⇒ φ | φ (Axiom)
□φ | ∅ ⇒ ∅ | φ (R6)

□φ | ∅ ⇒ ∅ | φ ∨ ψ (R7)

ψ | ψ ⇒ ψ | ψ (Axiom)
□ψ | ∅ ⇒ ∅ | ψ (R6)

□ψ | ∅ ⇒ ∅ | φ ∨ ψ (R7)
□φ ∨ □ψ | ∅ ⇒ ∅ | φ ∨ ψ (R10)

□φ ∨ □ψ | ∅ ⇒ ∅ | □(φ ∨ ψ) (R5)

Theorem 4.8. (Soundness) If a sequent of PM4N is provable, then it is valid.
Proof: By induction on the length of proofs. As observed, the axioms are valid sequents,
and the rules preserve the validity. Then each provable sequent is valid.

Completeness also can be met in Zach [19]. The idea is due to Schutte (apud [19]),
that for a sequent Λ either it has a proof or it has a counter-model.

Now it is important to observe that each sequent is a 4-sequence of finite sequences.
So they are always finite.
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Theorem 4.9. (Completeness) If a sequent of PM4N is valid, then it is provable.
Proof: We begin with a sequent Λ. From it we must construct a tree of sequents T that
can represent a proof of Λ or show a counter-model for Λ.

We test Λ. If it is an axiom, then it has a proof. If not, we begin the construction of
the tree down-up or the reduction tree in an induction way.

First step: Write Λ at the root of the tree.
Induction step: If the topmost sequent ∆ of a branch includes only atomic formulas p,

then stop the construction for this branch.
If the sequent ∆ does not have only atomic formulas, then it is an open branch. Thus

∆ includes some formula with a principal operator. So we must consider the rule that
originated this operator in the tree.

We repeat the following steps for each non-atomic formula ψ that appears at the ith
step in the topmost sequent ∆ of an open branch, if it was not reduced at step i on this
branch, nor it is the result of a reduction at this stage.

This formula ψ is a negation or a necessitation or a disjunction, due to its principal
operator.

This way the reduction in this action seems to:

∆′, σ

∆

such that at the formula(s) σ is applied the rule of introduction for the principal operator
of ψ. The formula ψ occurs in ∆ and ∆′ is the part standard for the two sequents.

When this process is concluded, let T be the reduction tree edified.
As Λ is composed by a finite number of formulas and the reductions go over the

sub-formulas of formulas in previous step, then the concluded tree T is finite.
This way, each leaf sequent includes only atomic formulas that occur at every place in

that sequent.
If in each leaf is an axiom, like we have used only introduction rules for T, then we

have a proof that is a cut-free proof from axioms using the formulas detached in T and
Λ has a proof without the cut.

If the sequent in some leaf is not an axiom, then we define a valuation for each of
these variables putting v(p) = y ̸= x, for Λx. By induction on the complexity of any
formula ψ ∈ B, no formula ψ in B takes the truth-value corresponding to the position
for which it stands. Hence v does not satisfy Λ and v is a counter-model for the original
sequent Λ.

In the spirit of these developments, we can present more results for the other operators
too.

Sequent rules:

Possibility
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(R11) Λ0 | Λn, φ ⇒ Λb | Λ1; Λ0 | Λn ⇒ Λb, φ | Λ1; Λ0 | Λn ⇒ Λb | Λ1, φ

Λ0 | Λn ⇒ Λb | Λ1,♢φ

(R12) Λ0, φ | Λn ⇒ Λb | Λ1

Λ0,♢φ | Λn ⇒ Λb | Λ1

Conjunction

(R13) Λ0 | Λn ⇒ Λb | Λ1, φ, ψ

Λ0 | Λn ⇒ Λb | Λ1, φ ∧ ψ

(R14) Λ0 | Λn ⇒ Λb, φ, ψ | Λ1; Λ0 | Λn ⇒ Λb, φ | Λ1, ψ; Λ0 | Λn ⇒ Λb, ψ | Λ1, φ

Λ0 | Λn ⇒ Λb, φ ∧ ψ | Λ1

(R15) Λ0 | Λn, φ, ψ ⇒ Λb | Λ1; Λ0 | Λn, φ ⇒ Λb | Λ1, ψ; Λ0 | Λn, ψ ⇒ Λb | Λ1, ψ

Λ0 | Λn, φ ∧ ψ ⇒ Λb | Λ1

(R16) Λ0, φ | Λn ⇒ Λb | Λ1; Λ0, ψ | Λn ⇒ Λb | Λ1; Λ0 | Λn, φ ⇒ Λb, ψ | Λ1; Λ0 | Λn, ψ ⇒ Λb, φ | Λ1

Λ0, φ ∧ ψ | Λn ⇒ Λb | Λ1

Conditional

(R17) Λ0, φ | Λn ⇒ Λb | Λ1; Λ0 | Λn ⇒ Λb | Λ1, ψ; Λ0 | Λn, φ, ψ ⇒ Λb | Λ1; Λ0 | Λn ⇒ Λb, φ, ψ | Λ1

Λ0 | Λn ⇒ Λb | Λ1, φ → ψ

(R18) Λ0 | Λn ⇒ Λb, ψ | Λ1, φ; Λ0 | Λn, φ ⇒ Λb, ψ | Λ1; Λ0, ψ | Λn, φ ⇒ Λb | Λ1

Λ0 | Λn ⇒ Λb, φ → ψ | Λ1

(R19) Λ0 | Λn, ψ ⇒ Λb | Λ1, φ; Λ0 | Λn, ψ ⇒ Λb, φ | Λ1; Λ0, ψ | Λn ⇒ Λb, φ | Λ1

Λ0 | Λn, φ → ψ ⇒ Λb | Λ1

(R20) Λ0, ψ | Λn ⇒ Λb | Λ1, φ

Λ0, φ → ψ | Λn ⇒ Λb | Λ1

Definition 4.10. A proof of a sentence φ is a proof of a sequent as ∅ | ∅ ⇒ {φ}b | {φ}1.

Now the proof for the scheme T: □φ → φ.

(i) ∅ | ∅ ⇒ □φ → φ | □φ → φ

φ | φ ⇒ φ | φ (Axiom)
□φ | ∅ ⇒ φ | φ (R6)

□φ | □φ ⇒ φ | φ (Weakening)
∅ | ∅ ⇒ □φ → φ | □φ → φ (R17) and (R18)
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5 Final considerations

The aim of this paper was to understand and contribute with the development of the
modal and 4-valued logic PM4N.

We reviewed the matrix semantics of PM4N and made explicit its algebraic character.
We presented in the usual way a tableaux system for this logic. Finally, we introduced a
sequent calculus for that logic and showed the adequacy of the sequent calculus for the
matrix semantic of PM4N. In a further paper we must compare the system PM4N
with other well known logical systems.
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