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Abstract: This study concerns another approach for computing the scalars A
(k)
i of the partial

fraction decomposition F (x) = R(x)
Q(x) = R(x)∏s

i=1(x − γi)mi
=

s∑
i=1

mi∑
k=1

A
(k)
i

(x−γi)k , where R(x) and Q(x) are

polynomials of real or complex coefficients, with deg(R) < deg(Q). More precisely, we provide a method
to exhibit compact explicit formulas of the scalars A

(k)
i (1 ≤ i ≤ s, 1 ≤ k ≤ mi). Some illustrative

special cases and several examples are furnished, to show the efficiency of this new approach. Finally,
concluding remarks and perspectives are presented.
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1 Introduction

Since a long time, the partial fraction decomposition (or expansion) represents a
fundamental topic, with several applications in various fields of pure and applied
mathematics such that differential equations, control theory, and other fields of applied
sciences and engineering. In addition, the partial fraction decomposition is also an
important tool in the teaching areas such that Calculus, Laplace transform, etc. It is
worth noting that the literature is very vast on this very rich topic.

A well known theoretical theorem in algebra asserts that every rational function has
a unique partial fraction decomposition (see, for example, [3, 4, 10, 11]). Moreover,
several methods have been improved in the literature for computing the partial fraction
decomposition. Generally, there are two usual approaches for establishing the numerators
of the partial fractions, namely, for computing the scalars A

(k)
i . The technique of the first

approach, known as the "Method of undetermined coefficients", consists first in reducing

Submitted 26 March 2023; Accepted 10 June 2023; Available online 30 June 2023.
ISSN 2675-8318 Copyright ©2023 INTERMATHS. Published by Edições UESB. This is an Open Access article under the CC BY 4.0 license.

https://doi.org/10.22481/intermaths.v4i1.12294
https://orcid.org/0000-0002-7128-0789
https://orcid.org/0000-0002-8210-7383
mailto:leandro.lima@ufms.br
http://www2.uesb.br/editora/


to the same denominator the partial fraction decomposition, of the given rational
function. Second, since the denominators on both sides are the same, the numerators
must also be the same. Then, we equalize the similar coefficients (corresponding to
the same power of x) of the two polynomials of the numerators on either side of the
equalityi. Therefore, the scalars A

(k)
i can be found by solving a system of linear equations.

The second approach is based on the application of the Heaviside’s "cover-up method",
which necessitate substitutions to establish the scalars A

(k)
i , of the partial fraction

decomposition, in the case with single poles γj (1 ≤ j ≤ deg(Q)). For multiple poles
case γj (1 ≤ j ≤ s), with mj ≥ 2 for some j, successive differentiation are applied, for
calculating the scalars A

(k)
i . Despite that, this topic continue to attract much attention,

and there has been recent developments in the computation aspect of the scalars A
(k)
i ,

for general rational functions (see for example, [3, 4, 6, 15]) as well as for some special
cases (see, for example, [5, 6, 12–14]). Meanwhile, the approaches and methods for
decomposing a rational function into partial fractions are computationally intensive,
especially when the multiplicities of roots of the denominator are higher.

In this paper we establish another approach for providing the explicit formulas for the
scalars A

(k)
i of the partial fraction decomposition of the rational functions F (x) = R(x)

Q(x) ,
where R(x), Q(x) are polynomials in R[X] or C[X], such that (without loss of generality)
the degree of R is less than the degree of Q and are mutually prime. The essence of our
approach requires a computational process, based on two known results of the literature.
More precisely, suppose that R and Q are mutually prime and Q(x) = ∏s

j=1(x − γj)mj ,
where each root γj is of multiplicity mj ≥ 1. We develop a computational process,
which allows us to present a new method, for exhibiting compact explicit formulas of
the partial fraction decomposition,

F (x) = R(x)
Q(x) = R(x)∏s

i=1(x − γi)mi
=

s∑
i=1

mi∑
k=1

A
(k)
i

(x − γi)k
.

Our main goal is to give a new compact explicit formulas for the scalars A
(k)
i (1 ≤ i ≤ s,

1 ≤ k ≤ mj). As a consequence, some applications and several illustrative examples are
presented, in order to show the efficiency of our approach.

This study is organized as follows. For reason of clarity and conciseness, Section 2
is devoted to the two fundamental results, representing the basic tools of our method.
Section 3 is concerned with the generic case, where a compact explicit formula of the
i
It is known that two polynomials are equal, if and only if, the coefficients at the corresponding powers of x are equal.
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partial fraction decomposition is given for the special case F (x) = 1
Q(x) . In Section 4

we study the general case of partial fraction decomposition, where the explicit formulas
of the partial fraction decomposition of the generic case plays a central key. In addition,
two special cases are provided. Results of Sections 3 and 4 are illustrated by significant
examples, in order to show the efficiency of our approach. Finally, in Section 5 we give
some concluding remarks and perspective.

For reason of clarity, in the sequel we suppose that for the rational fraction F (x) =
R(x)
Q(x) , the two polynomials are relatively prime, namely, the great common divisor of
R(x) and q(x) is equal to 1.

2 Two fundamental results

In this section we consider the rational fraction F (x) = R(x)
Q(x) , where Q(x) = xr +

a0x
r−1 + · · · + ar−1, and without loss of generality we suppose deg(R) < deg(Q). Let

γi (1 ≤ i ≤ s) be the distinct roots (real or complex) of the polynomial Q(x), with
multiplicities mi (1 ≤ i ≤ s), respectively. Then, we have Q(x) = ∏s

i=1(x − γi)mi .

In sequel of our study, the next known result, will play a central role for computing
the scalars A

(k)
i .

Theorem 2.1. Let F (x) = R(x)
Q(x) be a rational function such that Q(x) = ∏s

i=1(x − γi)mi

and deg(R) < deg(Q) = m1 + ... + ms, where the γi (1 ≤ i ≤ s), with γi ̸= γj for i ̸= j,
are real or complex numbers. Then, the partial fractional decomposition of F (x), is given
by,

F (x) = R(x)∏s
i=1(x − γi)mi

=
s∑

i=1

mi∑
k=1

A
(k)
i

(x − γi)k
,

where

A
(k)
i = 1

(mi − k)!

[
R(x)∏s

j=1,j ̸=i(x − γj)mj

](mi−k)

x=γi

.

Here [f(x)](n)
x=γ = dnf(x)

dxn
|x=γ = f (n)(γ), which means the value of the derivation of order

n of the function f at x = γ.

Result of Theorem 2.1 is well known in the literature and it has been demonstrated
by various algebraic and analytical methods (see, for example, [3, 4, 15]).

The second classical result, which will allow us to reach our goal, concerns a gen-
eralization, relating to the derivation of order d ≥ 2 of a product of differentiable
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functions.

Theorem 2.2. Let f1, f2,..., fs be derivable functions, until the order d. Then, we
have,  s∏

j=1
fj

(d)

=
∑

h1+...+hs=d

(
d

h1...hs

)
s∏

j=1
f

(hj)
j , (1)

where f (k) means the derivation de order k of the function f and
(

d

h1...hs

)
= d!

h1! ... hs! .

Theorem 2.2 is not common in books of Calculus or real analysis. In fact, it represents
a generalization of the well- known formula of the Calculus (fg)′ = f ′g + fg′. A known
generalization, of this former expression, has been established for s = 2 and d ≥ 2, and
it is given by,

(fg)(d) =
∑

h1+h2=d

(
d

h1 h2

)
f (h1)g(h2) =

d∑
h=0

(
d

h

)
f (h)g(d−h). (2)

The former Formula Eq. (2) can be established by induction, analogously to that which
makes it possible to establish the Newton’s binomial formula, namely, (a + b)n =∑n

k=0

(
n
k

)
akbn−k. Similarly, Formula Eq. (1) can be also established by induction, by

adapting the proof of the classical formula

[a1 + a2 + . . . as](d) =
∑

h1+...+hs=d

(
d

h1...hs

)
s∏

j=1
a

(hj)
j .

Theorem 2.2 and Formula Eq. (2), have been studied in [1, 8]. They are considered
as generalization of Leibniz’s rule for differentiation.

3 Partial fraction decomposition: Generic case and special cases

A Study of the generic case In this section we consider a monic (or unitary) polynomial
Q(x) = xr + a0x

r−1 + · · · + ar−1. Let γi (1 ≤ i ≤ s) be the distinct roots of Q(x), with

multiplicities mi (1 ≤ i ≤ s), respectively. Then, we have Q(x) =
s∏

i=1
(x − γi)mi . For the

partial fractional decomposition of F (x) = 1
Q(x) , a direct application of Theorem 2.1

(with R(x) = 1) shows easily that we have,

F (x) = 1∏s
i=1(x − γi)mi

=
s∑

i=1

mi∑
k=1

A
(k)
i

(x − γi)k
. (3)
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with

A
(k)
i = 1

(mi − k)!

[
1∏s

j=1,j ̸=i(x − γj)mj

](mi−k)

x=γi

. (4)

In the aim to obtain the compact explicit expression of the scalars A
(k)
i , let apply

Theorem 2.2 by taking fj(x) = 1
(x − γj)mj

= (x − γj)−mj . More precisely, we apply the
preceding Formula Eq. (4) to the family of functions Hi(x) (1 ≤ i ≤ s) defined by,

Hi(x) =
s∏

j=1,j ̸=i

fj(x) =
s∏

j=1,j ̸=i

(x − γj)−mj , for 1 ≤ i ≤ s.

For reason of clarity and simplicity, Γi,di(k) = {[hj ]i = (h1, ..., hi−1, hi+1, ..., hs);
∑

1≤j ̸=i≤s hj =
di(k)} and we set di(k) = mi − k. Then, the main formula of Theorem 2.2, allows us to
derive that,

[Hi(x)](di(k))
x=γi

=
∑

[hj ]i∈Γi,k

(
di(k)

h1..., hi−1, hi+1, ...hs

)
s∏

j=1,j ̸=i

f
(hj)
j (γi), (5)

where
(

di(k)
h1...ĥi...hs

)
= di(k)!

h1!...hi−1!hi+1!...hs! . It is well known that the derivative f
(hj)
j (x) =

[(x − γj)−mj ](hj) is given explicitly by f
(hj)
j (x) = (−1)hj

(hj + mj − 1)!
(mj − 1)! (x − γj)−mj−hj .

Thus, we derive that f
(hj)
j (γi) = (−1)hj

(hj + mj − 1)!
(mj − 1)! (γi − γj)−mj−hj . By substitution of

this former formula of f
(hj)
j (x) in Expression Eq. (5) of [Hi(x)](di(k))

x=γi
, a straightforward

computation allows us to deduce that

[Hi(x)](di(k))
x=γi

=
∑

[hj ]i∈Γi,k

(
di(k)

h1..., hi−1, hi+1, ...hs

)
s∏

j=1,j ̸=i

f
(hj)
j (γi).

Therefore, we get

[Hi(x)](di(k))
x=γi

=
∑

[hj ]i∈Γi,k

(
di(k)

h1..., hi−1, hi+1, ...hs

)
s∏

j=1,j ̸=i

(−1)hj
(hj + mj − 1)!

(mj − 1)! (γi−γj)−mj−hj .

And a direct computation shows that, we have,

[Hi(x)](di(k))
x=γi

=
∑

Γi,di(k)

(−1)mi−k(mi − k)!
s∏

j=1,j ̸=i

(
hj + mj − 1

hj

)
(γi − γj)−mj−hj ,
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or equivalently,

[Hi(x)](di(k))
x=γi

= (−1)mi−k(mi − k)!
∑

[hj ]i∈Γi,di(k)

Ωi([hj]i; [γj]), (6)

where [hj]i = (h1, ..., hi−1, hi+1, ..., hs), [γj] = (γ1, ..., γs) and

Ωi([hj]i; [γj]) =
s∏

j=1,j ̸=i

[(
hj + mj − 1

hj

)
(γi − γj)−mj−hj

]
. (7)

Consequently, first, we observe that Expressions Eq. (3)-Eq. (4), Theorem 2.1 and
Theorem 2.2, imply that the partial fraction decomposition of the function F (x) = Q(x)−1

is given by,

1
Q(x) =

s∑
i=1

mi∑
k=1

A
(k)
i

(x − γi)k
=

s∑
i=1

mi∑
k=1

1
(mi − k)!

[Hi(x)](di(k))
x=γi

(x − γi)k
.

Second, taking into account Expressions Eq. (6)-Eq. (7), we get A
(k)
i = 1

(mi−k)! [Hi(x)](di(k))
x=γi

=
1

(mi−k)! × (−1)mi−k(mi − k)!∑[hj ]i∈Γi,di(k)
Ωi([hj]i; [γj]), which implies that we have,

A
(k)
i = 1

(mi − k)! [Hi(x)](di(k))
x=γi

= (−1)mi−k
∑

[hj ]i∈Γi,di(k)

Ωi([hj]i; [γj]),

where the scalars Ωi([hj]i; [γj]) are as in Expression Eq. (7). In summary, the previous
discussion shows that the main result of this section, can be formulated as follows.

Theorem 3.1. Under the preceding data the partial fraction decomposition of the rational

function F (x) = 1
Q(x) , where Q(x) =

s∏
i=1

(x − γi)mi, is given by,

F (x) = 1
Q(x) =

s∑
i=1

mi∑
k=1

(−1)mi−k
∑

[hj ]i∈Γi,di(k)

Ωi([hj]i; [γj])

 1
(x − γi)k

, (8)

where Γi,di(k) = {[hj]i = (h1, ..., hi−1, hi+1, ..., hs);
∑

1≤j ̸=i≤s hj = mi − k} and the
Ωi([hj]i; [γj]) are yielded by Expression Eq. (7), namely, we have F (x) = 1

Q(x) =
s∑

i=1

mi∑
k=1

A
(k)
i

(x − γi)k
, where

A
(k)
i = (−1)mi−k

∑
[hj ]i∈Γi,di(k)

Ωi([hj]i; [γj]). (9)
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In Section 4, Expressions Eq. (8)-Eq. (9) of Theorem 3.1, will be utilized for studying
the general case of the partial fraction decomposition of a rational function F (x) = R(x)

Q(x) ,
where Q(x) = ∏s

i=1(x − γi)mi and R(x) is a polynomial, such that (without loss of
generality) deg(R) < deg(Q) = m1 + m2 + . . . + ms. That is, the results of this
subsection combined with Theorem 2.2, will be extensively used for providing explicit
compact formulas, for the scalars A

(k)
i , of the partial fraction decomposition in the

general setting.
Finally, it is important to note that a formula analogous to Eq. (8), has been highlighted

in [2], using another approach.

B Special cases and illustrative examples This subsection is devoted to illustrate
the efficiency of the result of the main Theorem 3.1. We study with more details the
special case s = 2, along with various numerical examples. To this aim, we start by the
following proposition.

Proposition 3.2. Consider the polynomial Q(x) = (x − γ1)m1(x − γ2)m2 , where γ1, γ2

are real or complex numbers and m1, m2 are positive integer. Then, the partial fraction
decomposition of the rational function F (x) = 1

Q(x) , is given by,

F (x) = 1
Q(x) =

m1∑
k=1

A
(k)
1

(x − γ1)k
+

m2∑
k=1

A
(k)
2

(x − γ2)k
, (10)

where
A

(k)
1 = (−1)m1−kΩ2,k(γ1, γ2) = (−1)m1−k

(
m2+m1−k−1

m2−k

)
(γ2 − γ1)−(m1+m2)+k,

A
(k)
2 = (−1)m2−kΩ2,k(γ1, γ2) = (−1)m2−k

(
m1+m2−k−1

m2−k

)
(γ2 − γ1)−(m1+m2)+k.

(11)

Proof. We apply result of Theorem 3.2. We have A
(k)
1 = (−1)m1−k ∑

Γ1,k
Ω1,k(γ1, γ2),

where Γ1,k = {(h2); h2 = m1 −k} = {m1 −k}, which implies that, we have Ω1,k(γ1, γ2) =(
h2 + m2 − 1

h2

)
(γ1 − γ2)−h2−m2 . Therefore, we obtain,

Ω1,k(γ1, γ2) =
(

m1 + m2 − (k + 1)
m1 − k

)
(γ1 − γ2)−(m1+m2)+k.

Similarly, since A
(k)
2 = (−1)m2−k ∑

Γ2,k
Ω2,k(γ1, γ2) and Γ2,k = {(h1); h1 = m2 − k} =

{m2 − k}, we derive Ω2,k(γ1, γ2) =
(

h1 + m1 − 1
h1

)
(γ2 − γ1)−h1−m1 , which implies that
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we have,

Ω2,k(γ1, γ2) =
(

m1 + m2 − (k + 1)
m2 − k

)
(γ2 − γ1)−(m1+m2)+k.

Therefore, we obtain the partial fraction decomposition Eq. (10), with A
(k)
1 and A

(k)
2

given by Eq. (11). □

Suppose that m1 = m2 = 1 and consider the function F (x) = 1
(x − γ1)(x − γ2) ,

where γ1 and γ2 are in K (K = R or C), with γ1 ≠ γ2. Then, its partial fraction

decomposition is given by F (x) = A
(1)
1

x − γ1
+ A

(1)
2

x−γ2
. Let apply our process for computing

the scalars A
(1)
1 and A

(1)
2 . Since m1 = 1 and m2 = 1, we can show that Γ1,1 =

{1 − 1} = {0} and Γ2,1 = {1 − 1} = {0}. Hence, we get Ω1,1(γ1, γ2) =
(

1+1−1−1
1−1

)
(γ1 −

γ2)−(1+1)+1 = 1
γ1−γ2

and Ω1,2(γ1, γ2) =
(

1+1−1−1
1−1

)
(γ2 − γ1)−(1+1)+1 = 1

γ2−γ1
. Therefore, we

have A
(1)
1 = (−1)1−1∑

Γ1,1 Ω1,1(γ1, γ2) = 1
γ1−γ2

and A
(2)
1 = (−1)1−1∑

Γ1,2 Ω1,1(γ1, γ2) =
1

γ2−γ1
. Accordingly, we state the following corollary.

Corollary 3.3. Let γ1 and γ2 be in K (K = R or C), with γ1 ̸= γ2. Then, the partial
fraction decomposition of the rational functions F (x) = 1

(x − γ1)(x − γ2) , is given by,

F (x) = 1
(x − γ1)(x − γ2)

= 1
γ1 − γ2

1
x − γ1

+ 1
γ2 − γ1

1
x − γ2

. (12)

Let consider the following illustrative numerical example of Expression Eq. (12).

Example 3.4. Let Q(x) = (x − 8)(x − 6), and consider the rational fration F (x) =
1

(x − 8)(x − 6) . Here we have γ1 = 8, γ2 = 6. And by applying Expression Eq. (12), we

show that the partial fraction decomposition of the rational function F (x) = 1
(x − 8)(x − 6) ,

is given by, F (x) = 1
2 .

1
x − 8 − 1

2 .
1

x − 6 .

This decomposition is consistent with the direct calculation, which shows the efficiency
of Theorem 3.1 and its Corollary 3.3.

Suppose m1 = 2 and m2 = 1 and consider the rational function F (x) = 1
(x − γ1)2(x − γ2) ,

where γ1, γ2 in K (K = R or C), with γ1 ̸= γ2. Then, its partial fraction decomposition

can be written under the form F (x) = A
(1)
1

x − γ1
+ A

(2)
1

(x − γ1)2 + A
(1)
2

x − γ2
. Let apply our process

for computing the scalars A
(1)
1 , A

(2)
1 and A

(1)
2 . Since m1 = 2 and m2 = 1, we can show that

Γ1,1 = {1−1} = {0}, Γ1,2 = {1−1} = {0} and Γ2,1 = {1−1} = {0}. A direct application

of Expression Eq. (11), allows us to show that Ω1,1(γ1, γ2) =
(

2 + 1 − (1 + 1)
2 − 1

)
(γ1 −

γ2)−(2+1)+1 = 1
(γ1 − γ2)2 , Ω1,2(γ1, γ2) =

(
2 + 1 − (2 + 1)

2 − 2

)
(γ1 − γ2)−(2+1)+2 = 1

γ1 − γ2
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and Ω2,1(γ2, γ1) =
(

2 + 1 − (1 + 1)
1 − 1

)
(γ2 − γ1)−(1+2)+1 = 1

(γ2 − γ1)2 . Therefore, have

A
(1)
1 = (−1)2−1 ∑

Γ1,1

Ω1,1(γ1, γ2) = − 1
(γ1 − γ2)2 , A

(2)
1 = (−1)2−2 ∑

Γ1,2

Ω1,2(γ1, γ2) = 1
γ1 − γ2

and A
(1)
2 = (−1)1−1 ∑

Γ2,1

Ω2,1(γ1, γ2) = 1
(γ2 − γ1)2 . Finally, we can state the following

corollary.

Corollary 3.5. Let γ1 and γ2 be in K (K = R or C), with γ1 ̸= γ2. Then, the partial
fraction decomposition of the rational functions F (x) = 1

(x − γ1)2(x − γ2) , is given by,

F (x) = − 1
(γ1 − γ2)2 .

1
x − γ1

+ 1
γ1 − γ2

.
1

(x − γ1)2 + 1
(γ2 − γ1)2 .

1
x − γ2

. (13)

Let consider the following illustrative numerical example of Expression Eq. (13).

Example 3.6. Consider F (x) = 1
(x − 8)2(x − 6) . Since γ1 = 8, γ2 = 6, m1 = 2 and

m2 = 1, a direct computation implies that we have A
(1)
1 = −

∑
Γ1,1

Ω1,1(8, 6) = −1
4 , A

(2)
1 =

∑
Γ1,1

Ω1,2(8, 6) = 1
2 and A

(1)
2 =

∑
Γ2,1

Ω2,1(6, 8) = −1
2 . Therefore, Expression Eq. (13) implies

that the partial fraction decomposition of the rational function F (x) = 1
(x − 8)2(x − 6) , is

given by, F (x) = −1
4 .

1
x − 8 + 1

2 .
1

(x − 8)2 + 1
4 . 1

x−6 .

This partial fraction decomposition is consistent with the direct calculation, using
other known methods, which shows the efficiency of Theorem 3.1 and its Corollary 3.5.

Suppose that m1 = 2 and m2 = 3 and consider the function F (x) = 1
(x − γ1)2(x − γ2)3 ,

where γ1 and γ2 are in K (K = R or C), with γ1 ̸= γ2, then, its partial fraction
decomposition is given by F (x) = A

(1)
1

x−8 + A
(2)
1

(x−8)2 + A
(1)
2

x−6 + A
(2)
2

(x−6)2 + A
(3)
2

(x−6)3 . Let apply our
process for computing the scalars A

(1)
1 , A

(2)
1 , A

(1)
2 , A

(2)
2 and A

(2)
2 . Since m1 = 2 and m2 = 3,

we can show that Γ1,1 = {2 − 1} = {1}, Γ1,2 = {2 − 2} = {0}, Γ2,1 = {3 − 1} = {2},
Γ2,2 = {3 − 2} = {1} and Γ2,3 = {3 − 3} = {0}. An analogous straightforward
computation allows us to establish that,



Ω1,1(γ1, γ2) =
(

2+3−(1+1)
2−1

)
(γ1 − γ2)−(2+3)+1 = 3

(γ1−γ2)4 ,

Ω1,2(γ1, γ2) =
(

2+3−(2+1)
2−2

)
(γ1 − γ2)−(2+3)+2 = 1

(γ1−γ2)3 ,

Ω2,1(γ2, γ1) =
(

2+3−(1+1)
3−1

)
(γ2 − γ1)−(2+3)+1 = 3.(γ2 − γ1)−4 = 3

(γ2−γ1)4 ,

Ω2,2(γ2, γ1) =
(

2+3−(2+1)
3−2

)
(γ2 − γ1)−(2+3)+2 = 2.(γ2 − γ1)−3 = 2

(γ2−γ1)3 ,

Ω2,3(γ2, γ1) =
(

2+3−(3+1)
3−3

)
(γ2 − γ1)−(2+3)+3 = 1.(γ2 − γ1)−2 = 1

(γ2−γ1)2 .
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Since A
(1)
1 = (−1)2−1 ∑

Γ1,1

Ω1,1(γ2, γ1), A
(2)
1 = (−1)2−2 ∑

Γ1,2

Ω1,2(γ2, γ1), A
(1)
2 = (−1)3−1 ∑

Γ2,1

Ω2,1(γ2, γ1),

A
(2)
2 = (−1)3−2 ∑

Γ2,2

Ω2,2(γ2, γ1) and A
(3)
2 = (−1)3−3 ∑

Γ2,3

Ω2,3(γ2, γ1), we get the corollary.

Corollary 3.7. Let γ1 and γ2 be in K (K = R or C), with γ1 ̸= γ2. Then, the partial
fraction decomposition of the rational functions F (x) = 1

(x − γ1)2(x − γ2)3 is written
under the form,

F (x) = A
(1)
1

x − γ1
+ A

(2)
1

(x − γ1)2 + A
(1)
2

x − γ2
+ A

(2)
2

(x − γ2)2 + A
(3)
2

(x − γ2)3 , (14)

where 
A

(1)
1 = − 3

(γ1−γ2)4 , A
(2)
1 = 1

(γ1−γ2)3 ,

A
(1)
2 = 3

(γ2−γ1)4 , A
(2)
2 = − 2

(γ2−γ1)3 , A
(3)
2 = 1

(γ2−γ1)2 .
(15)

The following numerical example is an illustrative application of Expressions Eq. (14)-
Eq. (15).

Example 3.8. Consider the rational fraction F (x) = 1
(x − 8)2(x − 6)3 . We show easily

that γ1 = 8, γ2 = 6, m1 = 2 and m2 = 3. Then, application of Expression Eq. (15),
allows us to deduce that A

(1)
1 = − 3

16 , A
(2)
1 = 1

8 , A
(1)
2 = 3

16 , A
(2)
2 = 1

4 and A
(3)
2 = 1

4 .

Therefore, Expression Eq. (14) implies that the partial fraction decomposition of the
rational function F (x) = 1

(x − 8)2(x − 6)3 is given by,

F (x) = − 3
16 .

1
x − 8 + 1

8 .
1

(x − 8)2 + 3
16 .

x − 6 + 1
4 .

1
(x − 6)2 + 1

4 .
1

(x − 6)3 .

This decomposition is consistent with the direct calculation, utilizing the usual methods,
which shows the efficiency of Theorem 3.1 and its Corollary 3.7.

Note that, some special cases of polynomials Q(x) have been studied in the literature,
but without establishing a compact explicit formulas for the quantities A

(k)
i .

The generic special case s = 3, will be treated in the next section, as a particular case
on the general sitting (see Subsection C).

4 General setting and special cases

A General cases Following Theorem 2.1, for every polynomial R(x) of degree < m1 +
. . . + ms, and γi ∈ K (1 ≤ i ≤ s), with γi ̸= γj, the partial fractional decomposition
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of the rational fraction F (x) = R(x)∏s
i=1(x − γi)mi

is given by F (x) = R(x)∏s
i=1(x − γi)mi

=
s∑

i=1

mi∑
k=1

A
(k)
i

(x − γi)k
, where

A
(k)
i = 1

(mi − k)!

[
R(x)∏s

j=1,j ̸=i(x − γj)mj

](mi−k)

x=γi

.

Application of Theorem 2.2, or more precisely applying the formula Eq. (2), to the
function Fi(x) = R(x)Hi(x), permits us to get,

F
(d)
i (x) = [R × Hi](d)(x) =

∑
k1+k2=d

(
d

k1 k2

)
R(k1)(x)H(k2)

i (x),

for every d ≥ 0. Since R(k) = 0 for deg(R) = p < k ≤ d, the preceding expression takes
the form

F
(d)
i (x) = [R × Hi](d)(x) =

min(d,p)∑
k=0

(
d

k

)
R(k)(x)H(d−k)

i (x).

Therefore, the first amelioration of Theorem 2.1 is given in the following preliminary
proposition.

Proposition 4.1. Let R(x) and Q(x) = ∏s
i=1(x−γi)mi be a polynomials with coefficients

in K (K = R or C); where 0 ≤ p = deg(R) < m1 + . . .+ms and γi ∈ K (1 ≤ i ≤ s), with
γi ̸= γj for i ̸= j. Then, the partial fraction decomposition of of the rational function

F (x) = R(x)∏s
i=1(x − γi)mi

, is given by R(x)∏s
i=1(x − γi)mi

=
s∑

i=1

mi∑
k=1

A
(k)
i

(x − γi)k
, where

A
(k)
i = 1

(mi − k)!

min(mi−k,p)∑
h=0

(
mi − k

h

)
R(h)(γi)H(mi−k−h)

i (γi). (16)

Now by combining results of Theorem 3.1 and Proposition 4.1, we can establish the
compact explicit expression the partial fraction decomposition. That is, the substitution
of the expression of [Hi(x)](di(k))

x=γi
given by Eq. (6)-Eq. (7) in the formula Eq. (16) of A

(k)
i ,

permits to have,

A
(k)
i = 1

(mi − k)!

min(mi−k,p)∑
h=0

(
mi − k

h

)
R(h)(γi)H(mi−k−h)

i (γi),
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or equivalently,

A
(k)
i =

min(mi−k,p)∑
h=0

∑
[hj ]i∈Γi,mi−k−h

(−1)mi−k−h(mi − k − h)!
(

mi − k

h

)
R(h)(γi)Ωi([hj]i; [γj]),

where [hj]i = (h1, ..., hi−1, hi+1, ..., hs, [γj] = (γ1, ..., γs) and Ωi([hj]i; [γj]) is given as in
Expression Eq. (7). Therefore, the explicit formula of the partial fraction decomposition
is given in the next result.

Theorem 4.2. Let Q(x) and R(x) be two polynomials such that Q(x) = ∏s
i=1(x − γi)mi,

where γi ̸= γj for i ̸= j (1 ≤ i ≤ s) and deg(R) < m1 + . . . + ms. Then, the partial
fraction decomposition of F (x) = R(x)

Q(x) , is given by,

F (x) = R(x)∏s
i=1(x − γi)mi

=
s∑

i=1

mi∑
k=1

min(mi−k,p)∑
d=0

∑
[hj ]i∈Γi,mi−k−d

Ψd,i,k(γ1, ....γs)

 1
(x − γi)k

,

where Γi,r = {[hj]i = (h1, ..., hi−1, hi+1, ..., hs);
∑

1≤j ̸=i≤s hj = r} and

Ψd,i,k(γ1, ....γs) = (−1)mi−k−h(mi − k − h)!
(

mi − k

h

)
R(h)(γi)Ωi([hj]i; [γj]), (17)

such that [hj]i = (h1, ..., hi−1, hi+1, ..., hs, [γj] = (γ1, ..., γs) and Ωi([hj]i; [γj]) is given by
Expression Eq. (7). In other words, the scalars A

(k)
i of partial fraction decomposition

of the rational fraction F (x) = R(x)
Q(x) =

s∑
i=1

mi∑
k=1

A
(k)
i

(x − γi)k
, are expressed under the explicit

form,

A
(k)
i =

min(mi−k,p)∑
d=0

∑
[hj ]i∈Γi,mi−k−d

Ψd,i,k(γ1, ....γs), (18)

where the Ψd,i,k(γ1, ....γs) are given by Eq. (17).

When the degree of the polynomial R(x) is p = 0, we derive easily the result of
Theorem 3.1. Indeed, for p = deg(R) = 0, we have R(x) = c (constant), thus Expression
Eq. (18) takes the form Eq. (9), up to a multiplicative constant by c.

B Special case s = 2 and illustrative examples Suppose that F (x) = R(x)
Q(x) =

R(x)
(x − γ1)m1(x − γ2)m2

, where 0 ≤ p = deg R < m1 + m2. Then, the partial fraction

decomposition of F (x) is given by F (x) =
m1∑
k=1

A
(k)
1

(x − γ1)k
+

m2∑
k=1

A
(k)
2

(x − γ2)k
.
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Let d1(k) = max(m1 − k, p), d2(k) = max(m2 − k, p) and set Γ1,d = {h2; h2 =
d} for 0 ≤ d ≤ d1(k) and Γ2,d = {h1; h1 = d}, for 0 ≤ d ≤ d2(k). Then, the scalars
A

(k)
i , i = 1, 2, are given by,

A
(k)
1 =

min(m1−k,p)∑
d=0

∑
h2∈Γ1,m1−k−d

(−1)m1−k−d(m1 − k − d)!
(

m1 − k

d

)
R(d)(γ1)Ω1(h2; [γj]),

A
(k)
2 =

min(m2−k,p)∑
d=0

∑
h1∈Γ2,m2−k−d

(−1)m2−k−d(m2 − k − d)!
(

m2 − k

d

)
R(d)(γ2)Ω2(h1; [γj]),

where Ω1(h2; [γj]) =
(

h2+m2−1
h2

)
(γ1 − γ2)−m2−h2 and Ω2(h1; [γj]) =

(
h1+m1−1

h1

)
(γ2 −

γ1)−m1−h1 . In summary, we have the following proposition.

Proposition 4.3. Consider the rational fraction F (x) = R(x)
Q(x) , where Q(x)(x−γ1)m1(x−

γ2)m2 = with 0 ≤ p = deg R < m1 + m2. Then, the partial fraction decomposition of

F (x) is given by F (x) =
m1∑
k=1

A
(k)
1

(x − γ1)k
+

m2∑
k=1

A
(k)
2

(x − γ2)k
, where

A
(k)
i =

min(m1−k,p)∑
d=0

∑
h2∈Γ1,mi−k−d

(−1)mi−k−d(mi−k−d)!
(

mi − k

d

)
R(d)(γi)Ωi([(h1, h2)]i; [γj]),

for i = 1, 2, with Ω1(h2; [γj]) =
(

h2 + m2 − 1
h2

)
(γ1 − γ2)−m2−h2 and Ω2(h1; [γj]) =(

h1 + m1 − 1
h1

)
(γ2 − γ1)−m1−h1 .

Proposition 4.3 is deduced as a particular case of Theorem 3.1. We will illustrate the
steps of its application on the following particular case. Let F (x) = ax2 + bx + c

(x − γ1)2(x − γ2) ,
where (a, b) ̸= (0, 0), γ1 ̸= γ2. Comparing with the general case, we show that m1 = 2,
m1 = 1 and R(x) = ax2 + bx + c, of degree 1 ≤ p ≤ 2. Then, we have,

F (x) = ax2 + bx + c

(x − γ1)2(x − γ2)
= A

(1)
1

(x − γ1)
+ A

(2)
1

(x − γ2)2 + A
(1)
2

(x − γ1)
. (19)

Let exhibit the expressions of A
(1)
1 , A

(2)
1 and A

(1)
2 using the compact formula Eq. (18).

Computation of A
(1)
1 and A

(2)
1 . Following the general case m1 = 2 and i = 1, we have

A
(k)
1 = 1

(m1 − k)!

min(m2−k,1)∑
d=0

(
m1 − k

d

)
R(d)(γ1)H(m1−k−d)

1 (γ1),
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where H
(m1−k−d)
1 (γ1) = (−1)m1−k−d(m1 − k − d)!Ω1([hj]1; [γj]). For k = 1 we have

m1 − 1 = 1 and min(m1 − 1, 1) = 1. Thus, we derive,

A
(1)
1 = 1

1!

1∑
d=0

(
1
d

)
R(d)(γ1)H(1−d)

1 (γ1) = R(1)(γ1)H(0)
1 (γ1) + R(0)(γ1)H(1)

1 (γ1).

Since m2 = 1, Γ1,0 = {h2; h2 = 0} and Γ1,1 = {h2; h2 = 1}, we get,

H
(0)
1 (γ1) = (−1)00!Ω1(0, γ1) =

(
0 + m2 − 1

0

)
(γ1 − γ2)−m2 = 1

γ1 − γ2
,

H
(1)
1 (γ1) = (−1)11!Ω1(1, γ1) =

(
1 + m2 − 1

1

)
(γ1 − γ2)−m2−1 = − 1

(γ1 − γ2)2 .

Therefore, it follows that,

A
(1)
1 = R(1)(γ1)H(0)

1 (γ1) + R(0)(γ1)H(1)
1 (γ1) = 2aγ1 + b

γ1 − γ2
− aγ2

1 + bγ1 + c

(γ1 − γ2)2 .

Since R(x) = ax2 + bx + c we derive R(γ1) = aγ2
1 + bγ1 + c and R(1)(γ1) = 2aγ1 + b.

For k = 2, we show that m1 − k = 2 − 2 = 0, min(m1 − 2, 1) = min(0, 1) =
0 and Γ1,0 = {h2; h2 = 0}. Hence, we have A

(2)
1 (γ1) = 1

(2−2)!R
(0)(γ1)H(0)

1 (γ1) =
R(0)(γ1)H(0)

1 (γ1). Therefore, we derive that A
(2)
1 (γ1) = 0!(−1)0R(0)(γ1)Ω1(0, γ1) =

R(γ1)
(

0 + m1 − 1
0

)
(γ1 − γ2)−1 = R(γ1)

γ1 − γ2
, and it ensues that,

A
(1)
1 = aγ1 + b

γ1 − γ2
− aγ2

1 + bγ1 + c

(γ1 − γ2)2 and A
(2)
1 (γ1) = aγ2

1 + bγ1 + c

γ1 − γ2
. (20)

Computation of A
(1)
2 . Following the general case, we show that m2 = 1 and i = 2,

witch implies that m1 − 1 = 0 and min(m1 − 1, 1) = 0 and Γ2,0 = {h2; h2 = 0}.
Hence, we have A

(1)
2 = 1

(1−1)!R
(0)(γ2)H(0)

2 (γ2) = R(γ2)H(0)
2 (γ2), which permits to have

A
(1)
2 = R(γ2)0!(−1)0Ω2(0; γ2) = R(γ2)

(
0 + m2 − 1

0

)
(γ2 − γ1)−m2−0 = R(γ2)

(γ2 − γ1)2 , namely,

we have,
A

(1)
2 = aγ2

1 + bγ1 + c

(γ2 − γ1)2 . (21)

In summary, we can formulate the following proposition.

Proposition 4.4. The partial fraction decomposition of F (x) = ax + b

(x − γ1)2(x − γ2) is

given by F (x) = A
(1)
1

(x − γ1) + A
(2)
1

(x − γ2)2 + A
(1)
2

(x − γ1) , where A
(1)
1 , A

(2)
1 and A

(1)
2 are given as in
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expressions Eq. (20)-Eq. (21).

To better illustrate the efficiency of the preceding special case, namely, Proposition
4.4, we apply the formulas Eq. (20)-Eq. (21) to the following numerical cases.

Example 4.5. Suppose that F (x) = 2x + 1
(x − 8)2(x − 6) . We show easily that R(x) = 2x + 1,

γ1 = 8, γ2 = 6. Hence, we get R′(8) = 2, γ1 − γ2 = 2, R(8) = 17 and R(6) = 13. Now,
application of Expressions Eq. (20)-Eq. (21), implies that we have, A

(1)
1 = 2

2 − 17
4 =

−13
4 , A

(2)
1 = 17

2 and A
(1)
2 = 13

4 . Therefore, we get the partial fraction decomposition of
the rational function F (x) as follows F (x) = − 13

4(x − 8) + 17
2(x − 8)2 + 13

4(x − 6) .

A similar process can be applied to the following numerical example.

Example 4.6. Suppose that F (x) = x2 + x + 1
(x − 8)2(x − 6) . We show easily that R(x) =

x2 + x + 1 and R′(x) = 2x + 1. Since γ1 = 8, γ2 = 6, we have γ1 − γ2 = 2, R(8) = 73,
R′(8) = 17 and R(6) = 43. A direct calculation, applying Expressions Eq. (20)-Eq. (21),
shows that A

(1)
1 = 17

2 − 73
4 = −39

4 , A
(2)
1 = 73

2 and A
(1)
2 = 43

4 . Therefore, the partial
fraction decomposition, is given as follows F (x) = − 39

4(x − 8) + 73
2(x − 8)2 + 43

4(x − 6) .

Since theses numerical examples are simple, their partial fraction decomposition can
be obtained by means of other usual methods. However, our formula Eq. (18) of Theorem
4.2, allows us to compute compact explicit expressions for the coefficients A

(1)
1 , A

(2)
1 and

A
(1)
2 , of the partial fraction decomposition of Expression Eq. (19). And these compact

explicit formulas Eq. (20)-Eq. (21), applied to the preceding two numerical examples,
allows us to get their associated partial fraction decomposition.

C Special case s = 3 and illustrative examples Suppose that F (x) = R(x)
Q(x) =

R(x)
(x−γ1)m1 (x−γ2)m2 (x−γ3)m3 , where 0 ≤ p = deg R < m1 + m2 + m3. Then, the partial
fraction decomposition of F (x) is given by,

F (x) =
m1∑
k=1

A
(k)
1

(x − γ1)k
+

m2∑
k=1

A
(k)
2

(x − γ2)k
+

m3∑
k=1

A
(k)
3

(x − γ3)k
.

Let di(k) = max(mi − k, p), for i = 1, 2, 3. For every 0 ≤ d ≤ di(k), we set Γ1,d =
{(h2, h3); h2 + h3 = d}, Γ2,d = {(h1, h3); h1 + h3 = d}, Γ3,d = {(h1, h2); h1 + h2 = d}.

Then, the result of Theorem 3.1, namely, Expression Eq. (18), a direct computation
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shows that the scalars A
(k)
i , i = 1, 2, 3, are given by,

A
(k)
1 =

min(m1−k,p)∑
d=0

∑
(h2,h3)∈Γ1,m1−k−d

(−1)m1−k−d(m1 − k − d)!
(

m1 − k

d

)
R(d)(γ1)Ω1((h2, h3); [γj]),

A
(k)
2 =

min(m2−k,p)∑
d=0

∑
(h1,h3)∈Γ2,m2−k−d

(−1)m2−k−d(m1 − k − d)!
(

m2 − k

d

)
R(d)(γ2)Ω2(h1, h3); [γj]),

A
(k)
3 =

min(m3−k,p)∑
d=0

∑
(h1,h2)∈Γ3,m3−k−d

(−1)m1−k−d(m3 − k − d)!
(

m3 − k

d

)
R(d)(γ3)Ω3(h1, h2); [γj]),

where the Ωi(h1, h2); [γj]), for i = 1, 2, 3, are given as in Eq. (7). Accordingly, we can
state the following proposition.

Proposition 4.7. The partial fraction decomposition of F (x) = R(x)
(x − γ1)m1(x − γ2)m2(x − γ3)m3

,

where 0 ≤ p = deg R < m1 + m2 + m3 is given by F (x) =
m1∑
k=1

A
(k)
1

(x − γ1)k
+

m2∑
k=1

A
(k)
2

(x − γ2)k
+

m3∑
k=1

A
(k)
3

(x − γ3)k
, such that the A

(k)
i , for i = 1, 2, 3, are given by,

A
(k)
i =

min(mi−k,p)∑
d=0

∑
(h2,h3)∈Γ1,m1−k−d

Λi,dR(d)(γ1)Ωi((h2, h3); [γj]), (22)

where Λi,d = (−1)mi−k−d(mi − k − d)!
(

mi−k
d

)
and the Ωi(h1, h2); [γj ]), for i = 1, 2, 3, are

given as in Eq. (7), namely,

Ωi([hj]i; [γj]) =
3∏

j=1,j ̸=i

[(
hj + mj − 1

hj

)
(γi − γj)−mj−hj

]
, for i = 1, 2, 3. (23)

Suppose that R(x) = C ∈ K (constant), then, Expression Eq. (22) takes the form,

A
(k)
i = (−1)mi−k(mi − k)!C × Ωi((h2, h3); [γj]).

Example 4.8. Consider the rational fraction F (x) = 2x + 1
(x − 8)(x − 6)(x − 4) . We show

easily that R(x) = 2x + 1, γ1 = 8, γ2 = 6, γ3 = 4, which implies that R(8) = 17,
R(6) = 13 and R(4) = 9. Now, application of Expressions Eq. (22)-Eq. (23), implies
that A

(1)
1 = 17

8 , A
(1)
2 = −13

4 and A
(1)
3 = 9

8 . Therefore, the partial fraction decomposition
of F (x), is given as follows F (x) = 17

8(x − 8) − 13
4(x − 6) + 9

8(x − 4) .

Example 4.9. Suppose that F (x) = 2x + 1
(x − 8)(x − 6)2(x − 4) . We show easily that R(x) =
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2x + 1 and R′(x) = 2, γ1 = 8, γ2 = 6, γ3 = 4, which permits to get R(8) = 17,
R(6) = 13, R(4) = 9 and R′(6) = 2. By applying Expressions Eq. (22)-Eq. (23), we
obtain, A

(1)
1 = 17

16 , A
(1)
2 = −1

2 A
(2)
2 = −13

4 and A
(1)
3 = − 9

16 . Therefore, the partial
fraction decomposition of F (x) is F (x) = 17

16(x − 8) − 1
2(x − 6) − 13

4(x − 6)2 − 9
16(x − 4) .

Example 4.10. Suppose that F (x) = 2x + 1
(x − 8)(x − 6)2(x − 4)3 . Since R(x) = 2x + 1,

R′(x) = 2 and R′′(x) = 0 , γ1 = 8, γ2 = 6, γ3 = 4, we get R(8) = 17, R(6) = 13,
R(4) = 9, R′(8) = 2, R′(6) = 2, R′(4) = 2 and R′′(4) = 0. A straightforward compu-
tation, utilizing Expressions Eq. (22)-Eq. (23), allows us to obtain A

(1)
1 = 17

256 , A
(1)
2 =

11
16 , A

(2)
2 = −13

16 , A
(1)
3 = −193

256 , A
(2)
3 = −53

64 and A
(3)
3 = − 9

16 . Therefore, the partial
fraction decomposition of F (x) is F (x) = 17

256(x − 8) + 11
16(x − 6) − 13

16(x − 6)2 − 193
256(x − 4) −

53
64(x − 4)2 − 9

16(x − 4)3 .

5 Discussion, Concluding remarks and perspective

The partial fraction decomposition of the general case R(x)
Q(x) , where the polynomial

Q(x) = ∏s
j=1(x − λj)mj , have been largely studied in the literature, by using various

methods and techniques. In this study we have proposed an approach to determine the
partial fraction decomposition, where there is no need to resort to other techniques. It
seems to us that the compact explicit formulas, considered for the calculation of the
coefficients A

(k)
i (1 ≤ i ≤ s, 1 ≤ k ≤ mj), of the partial fractions decomposition, require

direct computation. This approach represents another method to determine the partial
fractions decomposition, apart from the usual techniques. In addition, comparing with
the literature, in the best of our knowledge, we show that there is no explicit formula
for the scalars Ak

i .
As a perspective, it seems important to us to highlight these results by a study of

an educational nature. Indeed, calculating the coefficients A
(k)
i , is not an easy task for

undergraduate. In the diversity of the usual methods, the choice of the adequate one is
not easy for the student. It seems interesting that the compact formulas of this approach,
can be proposed to students to allow them to acquire another method to determine the
partial fractions decomposition, using other techniques. Moreover, the elaboration of
algorithms will allow (as in [9]) to facilitate the use of the software such as MATLAB,
which will make it possible to better enhance the content of future educational research,
of this new approach.
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