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Abstract: A problem of practical interest is the determination of the reachability sets of
ordinary differential equations with an external perturbation, or with a control. This problem
can be extended to non-Newtonian spaces generated by continuous and injective functions α.
This paper presents a method to determine the reachability tube of a family of non-Newtonian
first-order linear differential equations with an external perturbation, or with a control, that
belongs to a set of functions that are α-continuous and α-bounded. The reachability tube is
determined explicitly in three non-Newtonian spaces that are associated with three α-generators.
The results obtained are illustrated numerically.
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1 Introduction

Newtonian calculus emerged in the second half of the 17th century under the contri-
butions of mathematicians such as Isaac Newton, Gottfried Wilhelm Leibnitz, Jakob
Bernoulli, Johann Bernoulli, and others, who established the bases of differential and
integral calculus, see [5]. The basic operations of Newtonian calculus, integration and
differentiation, are the infinitesimal versions of the arithmetic operations on the set
of real numbers, addition and subtraction. In this context, the Newtonian calculus is
sometimes called an additive calculus, indicating that the basic operation is addition.

The use of additive calculus is quite intuitive when we want to interpret some
properties that characterize the set of real numbers. For example, given two real
numbers a1 and b1, the distance between these numbers is related to the inverse
operation of addition: subtraction. In such a case, the distance is represented as the
absolute value of the real number b1 − a1, that is, |b1 − a1|. The generalization to the
case of spaces of greater dimension brings with it a non-essential complication. For
example, the distance between two vectors in the plane a = (a1, a2) and b = (b1, b2)
cannot be interpreted with the argument given in the set of real numbers. The reasoning
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that allows for an interpretation of the distance between these two vectors involves
the square root function α(x) =

√
x and its inverse α−1(x) = x2. In this case, we

observe that α(α−1(b1 − a1) + α−1(b2 − a2)) =
√

(b1 − a1)2 + (b2 − a2)2. According
to the definition of Euclidean distance between two vectors, we can consider using
α(α−1(b1 − a1) + α−1(b2 − a2)) to define the distance between the vectors a = (a1, a2)
and b = (b1, b2), that is,

∥b − a∥ = α(α−1(b1 − a1) + α−1(b2 − a2)).

Naturally, the extension to more dimensions can be obtained under the same argument;
see [12]. On the other hand, this method constitutes a generalization of the one-
dimensional case, since if we choose a = (a1, 0) and b = (b1, 0), then obviously we obtain
the distance on the real line: α(α−1(b1 − a1) + α−1(b2 − a2)) =

√
(b1 − a1)2 = |b1 − a1|.

The reasoning that has been presented can be used to extend other properties that
characterize the set of real numbers. In particular, it is possible to generalize the
arithmetic operations and the order that is defined in the set of real numbers. This
generates the so-called non-Newtonian calculus.

Non-Newtonian calculus was developed in the works of Grossman and Katz in a series
of papers which are summarized in [1]. Recently, non-Newtonian calculus has provided
a wide variety of mathematical tools for use in science, engineering, and mathematics,
and appears to have considerable potential for use as an alternative to the calculus of
Newton and Leibniz; see [20, 23, 24]. The basic principles are summarized as follows.

Let X be a non-empty subset of R and let α : X → R be an injective function such that
the range of this function is a subset Rα ⊂ R. The function α is called an α-generator of
an α-arithmetic over Rα if the following α-operations are well defined for each a, b ∈ Rα:

a
α⊕ b = α(α−1(a) + α−1(b)), α-addition, (1)

a
α⊖ b = α(α−1(a) − α−1(b)), α-substraction, (2)

a
α⊙ b = α(α−1(a) · α−1(b)), α-multiplication, (3)

a
α⊘ b = α

(
α−1(a)
α−1(b)

)
, α-division; (4)

see [1]. The set Rα is called set of non-Newtonian real numbers.
The function α allows us to establish an α-order on the set Rα as follows: a α

< b if,
and only if, α−1(a) < α−1(b); equivalently: a α≤ b if, and only if, α−1(a) ≤ α−1(b).

In the particular case where X = R and α(x) = id(x), where id : R → R defines the
identity function: id(x) = x for each x ∈ R, the id-operations are reduced to the usual
operations on real numbers:

a
id⊕ b = a+ b, a

id⊖ b = a− b, a
id⊙ b = a · b, a

id⊘ b = a

b
.

We note that, naturally, the id-order coincides with the usual order of real numbers:
a

id

< b if, and only if, a < b.
For other choices of the function α and the set X, an infinite number of α-arithmetic

can be obtained, on which Grossman and Katz developed the study of non-Newtonian
calculus. We describe two particular cases that are of practical interest.
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If we choose the functions α(x) = exp(x) and α−1(x) = ln(x) for each x ∈ R, then
the exp-operations (1)–(4) are defined by:

a
exp
⊕ b = ab, a

exp
⊖ b = a

b
, a

exp
⊙ b = aln(b) = bln(a), a

exp
⊘ b = a

1
ln(b) , b ̸= 1.

The non-Newtonian calculus obtained is called multiplicative calculus, or geometric
calculus. A review of the main properties of the multiplicative calculus can be consulted
in [6, 7, 10]. We should mention that this is probably one of the most popular non-
Newtonian calculus due to the amount of research and applications reported in the
literature. Some applications can be consulted in [12, 19, 20, 23].

On the other hand, if we choose α(x) = κ−1 sinh(x) and α−1(x) = arcsinh(κx) for
each x ∈ R, where κ ∈ (−1, 1), then the corresponding non-Newtonian calculus is called
Kaniadakis κ-calculus. The κ-operations (1)–(4) are defined by

a
κ⊕ b = κ−1 sinh(arcsinh(κa) + arcsinh(κb)) = x

√
1 + κ2y2 + y

√
1 + κ2x2,

a
κ⊖ b = κ−1 sinh(arcsinh(κa) − arcsinh(κb)) = x

√
1 + κ2y2 − y

√
1 + κ2x2,

a
κ⊙ b = κ−1 sinh

(
κ−1 arcsinh(κa) arcsinh(κb)

)
,

a
κ⊘ b = κ−1 sinh

(
κ

arcsinh(κa)
arcsinh(κb)

)
.

The resulting non-Newtonian calculus describes a generalized form of arithmetic that is
generally used in statistical physics; see [8, 9, 15]. Some applications of the Kaniadakis
κ-calculus can be consulted in [11, 22, 24].

Other aspects about particular cases of non-Newtonian calculus and their applications
can be consulted in [2–4, 21].

The rest of the paper is organized as follows. In Sect. 2 the basic preliminaries of
non-Newtonian calculus are presented: its algebraic and topological properties. In Sect. 3
some known properties of non-Newtonian differential calculus and their relationship with
Newtonian differential calculus are presented. The problem of finding the reachability
tube of the family of non-Newtonian first-order linear differential equations is presented
and solved in Sect. 4. The conclusions are formulated in Sect. 5.

2 Preliminaries of non-Newtonian calculus

In this section, we present a brief discussion on the algebraic and topological structure
of non-Newtonian real numbers, for which we assume that X = R and that α : X → Rα

is a continuous and injective function. The results presented are an adaptation of those
discussed in [14].

2.1 Algebraic properties of non-Newtonian numbers

One of the main characteristics of non-Newtonian real numbers is that this set is an
ordered field.

We remember that an ordered field is a system consisting of a set E, four binary
operations ( ◦⊕, ◦⊖, ◦⊙, ◦⊘) defined in E and an order ◦

< of the set E. The binary operations
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defined in E behave in the same way as the binary operations (+,−, · , / ) defined in R,
and the order of the set E, behaves in the same way as the order < of the set R; see [1].
An ordered field is called an arithmetic field when it is a subset of R.

The following results show that Rα is an ordered field under the operations (1)–(4)
and, therefore, is also an arithmetic field.

Theorem 2.1. (Rα,
α⊕) is an abelian group.

Proof. We note that from the definition of α-addition it follows that a α⊕ b ∈ Rα for
all a, b ∈ Rα, that is, the set Rα is closed under α-addition. On the other hand, if
a, b, c ∈ Rα, then from the definition of the α-addition we observe that

(a α⊕ b) α⊕ c = α(α−1(a α⊕ b) + α−1(c)) = α(α−1(α(α−1(a) + α−1(b))) + α−1(c))
= α(α−1(a) + α−1(b) + α−1(c))
= α(α−1(a) + α−1(α(α−1(b) + α−1(c))))
= α(α−1(a) + α−1(b α⊕ c)) = a

α⊕ (b α⊕ c).

Therefore, the α-addition is associative. On the other hand, we note that for all a ∈ Rα:
a

α⊕ α(0) = α(α−1(a)+0) = a = α(0+α−1(a)) = α(0) α⊕ a, it follows that α(0) is the zero
element of Rα with respect to the α-addition. Furthermore, for a ∈ Rα we observe that
a

α⊕ α(−α−1(a)) = α(α−1(a) −α−1(a)) = α(0) = α(−α−1(a) +α−1(a)) = α(−α−1(a)) α⊕
a, that is, α(−α−1(a)) ∈ Rα is the additive inverse of a ∈ Rα. It follows that (Rα,

α⊕)
is a group, and since a α⊕ b = α(α−1(a) + α−1(b)) = α(α−1(b) + α−1(a)) = b

α⊕ a for all
a, b ∈ Rα, we conclude that this is an abelian group.

Theorem 2.2. (Rα \ {α(0)}, α⊙) is an abelian group.

Proof. From the definition of α-multiplication we observe that a α⊙ b is an element of
Rα \{α(0)} for all a, b ∈ Rα, that is, the set Rα \{α(0)} is closed under α-multiplication.
Let a, b, c ∈ Rα \ {α(0)}. It follows from definition of α-multiplication that

(a α⊙ b) α⊙ c = α(α−1(a α⊙ b) · α−1(c)) = α(α−1(α(α−1(a) · α−1(b))) · α−1(c))
= α(α−1(a) · α−1(b) · α−1(c))
= α(α−1(a) · α−1(α(α−1(b) · α−1(c))))
= α(α−1(a) · α−1(b α⊙ c)) = a

α⊙ (b α⊙ c).

Therefore, α-multiplication is associative. Furthermore, given that for a ∈ Rα \ {α(0)}
it holds a α⊙ α(1) = α(α−1(a) · α−1(α(1))) = a = α(α−1(α(1)) · α−1(a)) = α(1) α⊙ a, we
conclude that α(1) is the identity of Rα \ {α(0)}. On the other hand, if a ∈ Rα \ {α(0)},
then a

α⊙ α( 1
α−1(a)) = α(α−1(a) · 1

α−1(a)) = α(1) = α( 1
α−1(a) · α−1(a)) = α( 1

α−1(a))
α⊙ a,

therefore a ∈ Rα \ {α(0)} has multiplicative inverse α( 1
α−1(a)) ∈ Rα \ {α(0)}. It follows

that (Rα \{α(0)}, α⊙) is a group. We conclude that Rα \{α(0)} is an abelian group, since
a

α⊙ b = α(α−1(a) · α−1(b)) = α(α−1(b) · α−1(a)) = b
α⊙ a for all a, b ∈ Rα \ {α(0)}.

Theorem 2.3. α-multiplication is distributive over α-addition.
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Proof. Let a, b, c ∈ Rα. we observe that

a
α⊙ (b α⊕ c) = α(α−1(a) · α−1(b α⊕ c)) = α(α−1(a) · (α−1(b) + α−1(c)))

= α(α−1(a) · α−1(b) + α−1(a) · α−1(c))
= (α(α−1(a) · α−1(b))) α⊕ (α(α−1(a) · α−1(c)))
= (a α⊙ b) α⊕ (a α⊙ c).

Therefore, the identity a
α⊙ (b α⊕ c) = (a α⊙ b) α⊕ (a α⊙ c) holds in the set of non-

Newtonian real numbers Rα. We can verify that (b α⊕ c) α⊙ a = (b α⊙ a) α⊕ (c α⊙ a) by the
same method.

As a consequence of Theorems 2.1, 2.2 and 2.3, we obtain the following result.

Theorem 2.4. (Rα,
α⊕, α⊙, α

<) is an ordered field and therefore is also an arithmetic field.

The following result shows the relationship that exists between the arithmetic fields
(R,+, ·, <) and (Rα,

α⊕, α⊙, α

<).

Theorem 2.5. The fields (R,+, ·, <) and (Rα,
α⊕, α⊙, α

<) are isomorphic.

Proof. It is enough to see that if φ : R → Rα is defined by φ(x) = α(x), then it holds:

φ(a+ b) = α(α−1(α(a)) + α−1(α(b))) = α(a) α⊕ α(b) = φ(a) α⊕ φ(b),
φ(a · b) = α(α−1(α(a)) · α−1(α(b))) = α(a) α⊙ α(b) = φ(a) α⊕ φ(b).

Equivalently, if ψ : Rα → R is defined by ψ(y) = α−1(y), then it holds:

ψ(a α⊕ b) = α−1(α(α−1(a) + α−1(b))) = α−1(a) + α−1(b) = ψ(a) + ψ(b),
ψ(a α⊙ b) = α−1(α(α−1(a) · α−1(b))) = α−1(a) · α−1(b) = ψ(a) · ψ(b).

This shows the result.

From an algebraic point of view, we observe that some properties of the set of
non-Newtonian real numbers can be obtained isomorphically from the corresponding
properties of the set of Newtonian real numbers. In the next section we show that this
situation can be extended to a topology of the set of non-Newtonian real numbers.

2.2 Topological properties of non-Newtonian numbers

In this section we show that the topology of the set of non-Newtonian real numbers
is obtained from the topology of the set of Newtonian real numbers. A more detailed
study on these properties can be found in [14, 18].

The set of non-Newtonian natural numbers is defined as

Nα = {α(n) ∈ Rα | n ∈ N}.

We observe that this set is closed under the α-addition, since if α(n) and α(m) are
chosen in Nα, then α(n) α⊕ α(m) = α(α−1(α(n)) + α−1(α(m))) = α(n + m) ∈ Nα. In
particular, it is clear that α(n) α⊕ α(1) = α(n+ 1). Therefore α(n) = α(1) α⊕ · · · α⊕ α(1)︸ ︷︷ ︸

n-times

.
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If α(n) α

> α(1), then α(n) α⊖ α(1) = α(n− 1). This observation allows us to introduce
the set of non-Newtonian integers, denoted by Zα, as the set

Zα = {α(n) ∈ Rα | n ∈ Z}.

The set of rational numbers Qα is naturally defined as:

Qα = {α(n) α⊘ α(m) ∈ Rα | α(n), α(m) ∈ Zα and α(m) ̸= α(0)}.

If a1, a2, . . . , am are arbitrary non-Newtonian real numbers, then we use the following
notation to denote the sum of these numbers: α∑m

k=1ak = a1
α⊕ a2

α⊕ · · · α⊕ am. Using
(1) and induction it can be verified that:

a1
α⊕ a2 = α(α−1(a1) + α−1(a1)),

a1
α⊕ a2

α⊕ a3 = α(α−1(α(α−1(a1) + α−1(a1))) + α−1(a3)),
= α(α−1(a1) + α−1(a1) + α−1(a3)),
· · ·

a1
α⊕ a2

α⊕ · · · α⊕ am = α(α−1(a1) + α−1(a2) + · · · + α−1(am)),

that is,
m

α∑
k=1

ak = α

(
m∑

k=1
α−1(ak)

)
.

For each a ∈ Rα and each α(m) ∈ Nα, we denote by aα(m) the α(m)-th power of a,
which is obtained by α-multiplying m-times the number a with itself:

aα(2) = a
α⊙ a = α(α−1(a) · α−1(a)) = α((α−1(a))2),

aα(3) = aα(2) α⊙ a = α(α−1(α((α−1(a))2)) · α−1(a)) = α((α−1(a))3),
· · ·

aα(m) = aα(m−1) α⊙ a = α((α−1(a))m),

that is,
aα(m) = α((α−1(a))m), m ∈ N. (5)

We observe from (5) that aα(1) = α(α−1(a)) = a and that aα(0) = α(1). We also
observe that aα(−1) = α( 1

α−1(a)), that is, aα(−1) is the multiplicative inverse of a, see
Theorem 2.2. Therefore, we conclude that: a α⊙ aα(−1) = aα(−1) α⊙ a = α(1) for all
a ∈ R \ {α(0)}.

An application that is obtained as a consequence of (5) is that for each a ∈ Rα and
each m ∈ N, the equation bα(m) = a has the solution

b = α
(

m

√
α−1(a)

)
,

which is verified directly by substituting in the corresponding equation. This allows us
to introduce the α(m)-th root of a non-Newtonian real number a ∈ Rα, which is denoted
by m

√
a

α and is defined as the number

m
√
a

α = α
(

m

√
α−1(a)

)
. (6)
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As a particular case, we observe that the α-square root of a ∈ Rα is defined as
√
a

α = α
(√

α−1(a)
)
.

In the same way, we introduce the α-absolute value of a non-Newtonian real number
a ∈ Rα, which is denoted by |a|α and is defined as

|a|α =
√
aα(2)

α
= α

(√
α−1(α((α−1(a))2))

)
= α(|α−1(a)|),

that is,
|a|α = α(|α−1(a)|). (7)

If we consider the possible cases for a ∈ Rα, we obtain as a consequence of the
representation (7), the definition of the function α-absolute value | · |α : Rα → Rα, which
is defined as

|a|α =


a, if a α

> α(0),
α(0), if a = α(0),
α(0) α⊖ a, if a α

< α(0).
(8)

The particularity of the representations (7)–(8) is due to the fact that the α-absolute
value allows us to characterize the non-Newtonian real numbers Rα. Let a ∈ Rα. We
say that a is a positive non-Newtonian real number if it satisfies a α≥ α(0), a is a negative
non-Newtonian real number if it satisfies a α≤ α(0) and, finally, we say that a is an
unsigned non-Newtonian real number if it satisfies a = α(0). Therefore, the set of
non-Newtonian real numbers Rα admits the decomposition Rα = R+

α ∪ R−
α ∪ {α(0)},

where
R+

α = {a ∈ Rα | a α

> α(0)}, R−
α = {a ∈ Rα | a α

< α(0)}.
We call R+

α the set of positive non-Newtonian real numbers and R−
α the set of negative

non-Newtonian real numbers. It is clear from the above definitions that Nα ⊂ R+
α .

Furthermore, we call the set R̄+
α = R+

α ∪ {α(0)} the set of non-negative non-Newtonian
real numbers.

A property of the absolute value in the set of real numbers is that |b1 · b2| = |b1| · |b2|
for each b1, b2 ∈ R. This property also holds for the set of non-Newtonian real numbers
with respect to α-absolute value. To see that this is so, let b1, b2 ∈ Rα. Then it follows
that

|b1
α⊙ b2|α = α(|α−1(b1

α⊙ b2)|) = α(
∣∣∣α−1(α(α−1(b1) · α−1(b2)))

∣∣∣)
= α(|α−1(b1) · α−1(b2)|)
= α(|α−1(b1)| · |α−1(b2)|)
= α(α−1(α(|α−1(b1)|)) · α−1(α(|α−1(b2)|)))
= α(|α−1(b1)|)

α⊙ α(|α−1(b2)|) = |b1|α
α⊙ |b2|α,

that is,
|b1

α⊙ b2|α = |b1|α
α⊙ |b2|α. (9)

Another property of the absolute value in the set of real numbers is the triangular
inequality: |b1 + b2| ≤ |b1| + |b2| for each b1, b2 ∈ R. This property also holds for the set
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of non-Newtonian real numbers. To see that this is so, let b1, b2 ∈ Rα. Then we observe
from (7) that

|b1
α⊕ b2|α = α(|α−1(b1

α⊕ b2)|) = α(|α−1(α(α−1(b1)+α−1(b2)))|) = α(|α−1(b1)+α−1(b2)|).

Therefore, if we apply α−1 on both sides of this equality, we obtain

α−1(|b1
α⊕ b2|α) = |α−1(b1) + α−1(b2)| ≤ |α−1(b1)| + |α−1(b2)|,

and, since α is injective, we obtain

|b1
α⊕ b2|α

α≤ α(|α−1(b1)| + |α−1(b2)|)
α≤ α(α−1(α(|α−1(b1)|)) + α−1(α(|α−1(b2)|)))
= α(|α−1(b1)|)

α⊕ α(|α−1(b1)|) = |b1|α
α⊕ |b2|α.

Therefore, for all b1, b2 ∈ Rα we conclude that:

|b1
α⊕ b2|α

α≤ |b1|α
α⊕ |b2|α. (10)

The distance between two numbers a1, a2 ∈ Rα is defined as |a1
α⊖ a2|α. We observe

that this distance is an element of R̄+
α , which follows from the representation (7), and

from observing that:

|a1
α⊖ a2|α = α(|α−1(a1

α⊖ a2)|) = α(|α−1(α(α−1(a1) − α−1(a2)))|)
= α(|α−1(a1) − α−1(a2)|),

that is,
|a1

α⊖ a2|α = α(|α−1(a1) − α−1(a2)|). (11)
We observe that the inequality |a1

α⊖ a2|α
α≥ α(0) is satisfied, since this is equivalent to

|α−1(a1) − α−1(a2)| ≥ 0. Furthermore, it is clear that |a1
α⊖ a2|α = α(0) if, and only if,

α−1(a1) = α−1(a2). On the other hand, it follows that the distance is symmetric, in the
sense that |a1

α⊖ a2|α = α(|α−1(a1) − α−1(a2)|) = α(|α−1(a2) − α−1(a1)|) = |a2
α⊖ a1|α.

Finally, for each a1, a2, a3 ∈ Rα it holds |a1
α⊖ a3|α

α≤ |a1
α⊖ a2|α

α⊕ |a2
α⊖ a3|α, which is

obtained from (10), and from observing that if we choose b1 = a1
α⊖ a2 and b2 = a2

α⊖ a3,
then

b1
α⊕ b2 = (a1

α⊖ a2)
α⊕ (a2

α⊖ a3) = α(α−1(a1
α⊖ a2) + α−1(a2

α⊖ a3))
= α(α−1(a1) − α−1(a2) + α−1(a2) − α−1(a3))
= α(α−1(a1) − α−1(a3)) = a1

α⊖ a3.

As a consequence, the function ϱα : Rα × Rα → Rα defined by

ϱα(a1, a2) = |a1
α⊖ a2|α

induces a metric on Rα, which satisfies for all a1, a2, a3 ∈ Rα the following conditions:

1. ϱα(a1, a2)
α≥ α(0).

2. ϱα(a1, a2) = α(0) if, and only if, a1 = a2.
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3. ϱα(a1, a2) = ϱα(a2, a1).

4. ϱα(a1, a3)
α≤ ϱα(a1, a2)

α⊕ ϱα(a2, a3).

The following result is obtained:

Theorem 2.6. The non-Newtonian space Rα is a metric space with metric ϱα defined
by

ϱα(a1, a2) = |a1
α⊖ a2|α = α

(
|α−1(a1) − α−1(a2)|

)
. (12)

The metric space (Rα, ϱα) is called non-Newtonian metric space and ϱα is called
non-Newtonian metric.

We observe that if in R we consider the standard metric ϱ : R × R → R defined by
ϱ(b1, b2) = |b1 − b2|, then

ϱα(a1, a2) = α
(
ϱ(α−1(a1), α−1(a2))

)
, a1, a2 ∈ Rα, (13)

which is obtained from (11). This property allows us to observe that the topology Tα for
Rα, which is induced by the metric ϱα, is obtained from the topology T for R induced
by the metric ϱ.

Let a and b be two arbitrary non-Newtonian real numbers. We denote by (a, b)α the set
of non-Newtonian real numbers x ∈ Rα that satisfy the following inequalities a α

< x
α

< b,
that is, the open interval (a, b)α = {x ∈ Rα | a α

< x
α

< b}. Equivalently, we identify this
set with the set of real numbers α−1(x) ∈ R that satisfy α−1(a) < α−1(x) < α−1(b),
that is, with the open interval of real numbers (α−1(a), α−1(b)). The above allows us to
express an open interval of non-Newtonian real numbers as

(a, b)α = α
(
(α−1(a), α−1(b))

)
. (14)

Similarly, we denote by [a, b]α = {x ∈ Rα |a α≤ x
α≤ b} a closed interval of non-Newtonian

real numbers. Under an argument similar to the one used, we express a closed interval
of non-Newtonian real numbers as

[a, b]α = α
(
[α−1(a), α−1(b)]

)
. (15)

Let a ∈ Rα be arbitrary and ϵ ∈ Rα such that ϵ α

> α(0). An open non-Newtonian ball of
center a and radius ϵ, which is denoted by Bα(a, ϵ), is defined as the set of non-Newtonian
real numbers x ∈ Rα such that ϱα(x, a) α

< ϵ, that is, Bα(a, ϵ) = {x ∈ Rα | ϱα(x, a) α

< ϵ}.
According to (7) and (11), we observe that if x ∈ Bα(a, ϵ), then α(|α−1(x α⊖ a)|) α

< ϵ, and
as α−1(x α⊖ a) = α−1(x)−α−1(a), then we can express the last inequality in the following
equivalent form α−1(a) −α−1(ϵ) < α−1(x) < α−1(a) +α−1(ϵ). As a consequence, we can
express a non-Newtonian open ball with center a ∈ Rα and radius ϵ α

> α(0) as

Bα(a, ϵ) = α
(
B(α−1(a), α−1(ϵ))

)
, (16)

where B(α−1(a), α−1(ϵ)) is a open ball of center α−1(a) ∈ R and radius α−1(ϵ) > 0, that
is, if B(α−1(a), α−1(ϵ)) represents the open interval (α−1(a) − α−1(ϵ), α−1(a) + α−1(ϵ)).
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Following the same reasoning, we observe that if the set B̄(α−1(a), α−1(ϵ)) describes
a closed ball of center α−1(a) ∈ R and radius α−1(ϵ) > 0, that is, if B̄(α−1(a), α−1(ϵ))
represents the closed interval [α−1(a) − α−1(ϵ), α−1(a) + α−1(ϵ)], then we can express a
closed non-Newtonian ball of center a and radius ϵ as

B̄α(a, ϵ) = α
(
B̄(α−1(a), α−1(ϵ))

)
. (17)

The expressions (16) and (17) allow us to observe that there is a dependence between
the topologies of R and Rα. We recall that a basis for a topology on R is a family B of
open sets such that each open subset of R is expressed as a union of some members of
B; see [17]. In particular, it is well known that if B = {B(a, ϵ) | a ∈ R and ϵ > 0}, then
B is a basis for the usual T topology of R, which is induced by the usual metric ϱ on
R. Furthermore, it is well known that if α is a continuous function, then α−1 is also a
continuous function, since α is injective. We observe that from this it follows that

Bα = {α(B(a, ϵ)) |B(a, ϵ) ∈ B}, (18)

is a basis for a topology Tα for Rα. This allows us to obtain the following result.

Theorem 2.7. Let Bα be defined as in (18). Then Bα is a basis for a topology Tα for Rα

that is induced by the function α from the usual topology T of the set of real numbers R.

3 Preliminaries of non-Newtonian differential calculus

The importance of the Theorem 2.7 allows us to reformulate the basic concepts for func-
tions of a variable in non-Newtonian calculus: α-limit, α-continuity, α-differentiability,
etc. These concepts allow us to introduce the basic principles of non-Newtonian differ-
ential calculus.

Let f : Rα → Rα be a function and x ∈ Rα.i We say that ℓ ∈ Rα is the α-limit of the
function f as x tends to a ∈ Rα, which is denoted by

αlim
x→a

f(x) = ℓ, (19)

if for all ϵ α

> α(0) there exists a non-Newtonian real number δ α

> α(0) such that if
α(0) α

< ϱα(x, a) α

< δ then ϱα(f(x), ℓ) α

< ϵ. Equivalently, ℓ ∈ Rα is the non-Newtonian
limit of the function f as x tends to a ∈ Rα, if for all ϵ α

> α(0) exists a non-Newtonian
real number δ α

> α(0) such that if x ∈ Bα(a, δ) \ {a}, then f(x) ∈ Bα(ℓ, ϵ).
From the definition of α-limit of a function, we can verify that if αlimx→af1(x) = ℓ1

and αlimx→af2(x) = ℓ2, then
αlim

x→a
(f1(x) α⊕ f2(x)) = ℓ1

α⊕ ℓ2,
αlim

x→a
(f1(x) α⊖ f2(x)) = ℓ1

α⊖ ℓ2,

αlim
x→a

(f1(x) α⊙ f2(x)) = ℓ1
α⊙ ℓ2,

and if ℓ2 ̸= α(0), then
αlim

x→a
(f1(x) α⊘ f2(x)) = ℓ1

α⊘ ℓ2.

i
We can also consider functions f : Rα → Rσ , where Rα is a set of non-Newtonian real numbers generated by a function α and Rσ is a set of non-Newtonian real numbers
generated by a function σ. Some general cases can be consulted in [16].
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According to the previous definitions, we can establish the meaning of the expression
αlimy→xf(y) = f(x) and introduce the concept of α-continuity of the function f at a
point x ∈ Rα. We say that f is α-continuous in x ∈ Rα, if for all ϵ α

> α(0) there exists a
non-Newtonian real number δ α

> α(0) such that if ϱα(x, z) α

< δ then ϱα(f(x), f(z)) α

< ϵ.
Equivalently, we say that f is α-continuous in x ∈ Rα, if for all ϵ α

> α(0) there exists a
non-Newtonian real number δ α

> α(0) such that f(Bα(x, δ)) ⊂ Bα(f(x), ϵ). Additionally,
we can verify that f is α-continuous in x ∈ Rα if, and only if,

αlim
h→α(0)

f(x α⊕ h) = f(x).

We say that the function f is α-continuous over [a, b]α if f is α-continuous for
all x ∈ [a, b]α. We denote by Cα[a, b] the set of functions f : [a, b]α → Rα that are
α-continuous over [a, b]α.

Analogously, we say that the function f is α-differentiable in x ∈ Rα if the following
limit exists:

αlim
h→α(0)

((f(x α⊕ h) α⊖ f(x)) α⊘ h).

In such a case, the α-derivative of f at x ∈ Rα is denoted by

dαf(x)
dαx

= αlim
h→α(0)

((f(x α⊕ h) α⊖ f(x)) α⊘ h). (20)

We say that the function f is α-differentiable over [a, b]α if f is α-differentiable for
all x ∈ [a, b]α. We denote by C1

α[a, b] the set of functions f : [a, b]α → Rα that are
α-differentiable over [a, b]α and such that its α-derivative is α-continuous over [a, b].

We note that if f is α-differentiable in x ∈ Rα, then f is also α-continuous in x, which
follows from observe that

αlim
h→α(0)

(f(x α⊕ h) α⊖ f(x)) = αlim
h→α(0)

(((f(x α⊕ h) α⊖ f(x)) α⊘ h) α⊙ h)

=
(

αlim
h→α(0)

((f(x α⊕ h) α⊖ f(x)) α⊘ h)
)

α⊙
(

αlim
h→α(0)

h
)

= dαf(x)
dαx

α⊙ α(0) = α(0),

which shows the result.
We consider an arbitrary function f : Rα → Rα and let f̂ : R → R be the function

such that the following diagram is commutative:

Rα Rα

R R

f

α−1 α−1

f̂

(21)

that is, such that f̂(α−1(x)) = (α−1 ◦ f ◦ α)(α−1(x)) is satisfied for each x ∈ Rα. We
note that if α : R → Rα is continuous, then from the diagram (21) it follows that
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αlimx→af(x) = ℓ if, and only if, limα−1(x)→α−1(a) f̂(α−1(x)) = α−1(ℓ). The above means
that

αlim
x→a

f(x) = α

(
lim

α−1(x)→α−1(a)
f̂(α−1(x))

)
. (22)

Furthermore, if α : R → R is continuous and f : Rα → Rα is α-differentiable in x ∈ Rα,
then from diagram (21) it follows once again that:

dαf(x)
dαx

= αlim
h→α(0)

((f(x α⊕ h) α⊖ f(x)) α⊘ h)

= lim
α−1(h)→0

α

(
f̂(α−1(x) + α−1(h)) − f̂(α−1(x))

α−1(h)

)
= α

(
df̂(α−1(x))

dα−1(x)

)
,

(23)

whenever f̂ is differentiable in α−1(x). Other properties analogous to (22) and (23) can
be consulted in [21].

The properties that have been described show that there is a dependence between
Newtonian differential calculus and non-Newtonian differential calculus, which follows
from the dependence that exists between the topology of the space of Newtonian real
numbers and the topology of the space of non-Newtonian real numbers.

There is a similar dependence between Newtonian integral calculus and non-Newtonian
integral calculus. We briefly mention this dependence. Let f : Rα → Rα. The non-
Newtonian α-integral, denoted by α∫ x

a f(η) dη, is defined by the requirement that, under
typical assumptions parallel to those of the fundamental theorem of Newtonian calculus,
it must be satisfied

dα

dαx

α∫ x

a
f(y) dy = f(x),

α∫ x

a

dαf(x)
dαx

dx = f(b) α⊖ f(a),

which uniquely implies that

α∫ x

a
f(x) dx = α

(∫ α−1(b)

α−1(a)
f̂(α−1(x)) dα−1(x)

)
,

where f̂ is the function obtained from the commutative diagram (21); see [21].
Now we propose to verify that there is also a dependence in the set of Newtonian

differential equations and non-Newtonian differential equations, as a particular case, we
verify that this property is conserved in the set of first-order linear differential equations.

4 Reachability tube of the non-Newtonian first-order linear differential
equations

Using the α-derivative, we can consider finding the solutions of the non-Newtonian
first-order linear differential equation with an external perturbation

dαy(x)
dαx

α⊕ µ
α⊙ y(x) = u(x), y(α(0)) = α(0), (24)
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where µ is a non-Newtonian real number and u(x) is an external perturbation that
belongs to the set of functions

Uδ = {u(x) ∈ Cα[α(0), b] | δ−
α≤ u(x) α≤ δ+}, (25)

where b α

> α(0) is fixed, δ− and δ+ are positive non-Newtonian real numbers that satisfy
the inequality δ−

α

< α(0) α

< δ+.
We note that (24)–(25) describes a family of non-Newtonian first-order linear differen-

tial equations whose elements are indexed by an inclusion u(x) ∈ Uδ. In this family we
consider the following set:

Qα = {(x, y(x))⊤ ∈ R2
α | y(x) satisfies (24) for some u(x) ∈ Uδ with x ∈ [α(0), b]α},

which is called the reachability tube of the family of non-Newtonian first-order linear
differential equations (24)–(25). The importance of the reachability tube Qα in control
theory is due to the following geometric interpretation: this set contains all trajectories
of the solutions of the family of non-Newtonian first-order linear differential equations
(27)–(28).

In what follows we propose to determine the set Qα.
If we consider the functions ŷ and û that are associated with y and u, and such that

the following two diagrams are commutative

Rα Rα

R R

y

α−1 α−1

ŷ

Rα Rα

R R

u

α−1 α−1

û

(26)

that is, such that ŷ(α−1(x)) = (α−1◦y◦α)(α−1(x)) and û(α−1(x)) = (α−1◦u◦α)(α−1(x))
for each x ∈ Rα, and if we use the relation (23), then we can rewrite the non-Newtonian
first-order differential equation (23) as

dŷ(ξ)
dξ + α−1(µ)ŷ(ξ) = û(ξ), ŷ(0) = 0, (27)

where ξ = α−1(x) for each x ∈ Rα. On the other hand, we observe that if u(x) ∈ Uδ,
then û(ξ) ∈ Û , where

Û = {û(ξ) ∈ C[0, α−1(b)] | α−1(δ−) ≤ û(ξ) ≤ α−1(δ+)}. (28)

We observe that the resulting family of Newtonian first-order linear differential
equations (27)–(28) is equivalent to the family of non-Newtonian first-order linear
differential equations (24)–(25) under the action of the α-generator. Therefore, we can
formulate the problem of determining the reachability tube for the resulting family of
Newtonian first-order linear differential equations (27)–(28), which is described by

Q̂ = {(ξ, ŷ(ξ))⊤ ∈ R2 | ŷ(ξ) satisfies (27) for some û(ξ) ∈ Ûδ with ξ ∈ [0, α−1(b)]},

This reachability tube is well known and has been used to establish a robust stability
criterion for a family of Newtonian first-order linear differential equations similar to
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(27)–(28), and which have been used to establish a robust stability criterion in some
cases of the heat equation; see [25].

We list some of its main properties.
We first observe that if we choose an arbitrary external perturbation û(ξ) ∈ Ûδ, and

if we substitute this into (27), then we obtain the solution

ŷ(ξ) =
∫ ξ

0
e−α−1(µ)ηû(ξ − η) dη, ξ ∈ [0, α−1(b)].

On the other hand, if we choose constant external perturbations û±(ξ) = α−1(δ±), and
if we substitute these into (27), then the corresponding solutions are

ŷ±(ξ) = α−1(δ±)
∫ ξ

0
e−α−1(µ)η dη = α−1(δ±)

α−1(µ)
(
1 − e−α−1(µ)ξ

)
, ξ ∈ [0, α−1(b)].

We observe that the functions ŷ±(ξ) describe the boundary of the set Q̂, since if
û(ξ) ∈ Ûδ is any arbitrary perturbation, then the following inequality is satisfied

û−(η) ≤ û(η) ≤ û−(η), η ∈ [0, α−1(b)],

Therefore, if we multiply the members of this inequality by e−α−1(µ)η, and if we then
integrate them from 0 to ξ, then we obtain that

ŷ−(ξ) ≤ ŷ(ξ) ≤ ŷ+(ξ), ξ ∈ [0, α−1(b)].

As a consequence of this property, the external perturbations û±(ξ) are called Newtonian
worst external perturbations. We also observe that the set of trajectories obtained from
the family of first-order linear differential equations (27)-(28) fill the set Q̂, since if
(ξ0, ν0) is a point such that ξ0 ∈ [0, α−1(b)] and ŷ−(ξ0) ≤ ν0 ≤ ŷ+(ξ0), then there exists
λ ∈ [0, 1] such that ν0 = λŷ−(ξ0) + (1 − λ)ŷ+(ξ0). In this case, if we choose the external
perturbation û∗(ξ) = λû−(ξ) + (1 − λ)û+(ξ) ∈ Ûδ, and we substitute it in (27), then the
corresponding solution is described by ŷ∗(ξ) = λŷ−(ξ) + (1 − λ)ŷ+(ξ), which satisfies
ŷ∗(ξ0) = ν0. This shows that (ξ0, η0) is a point that belongs to Q̂.

The above description shows that

Q̂ = {(ξ, λŷ−(ξ) + (1 − λ)ŷ+(ξ))⊤ ∈ R2 | with λ ∈ [0, 1] and ξ ∈ [0, α−1(b)]}.

Furthermore, we observe that

Q̂ ⊂ R̄+ ×
[
α−1(δ−)
α−1(µ) ,

α−1(δ+)
α−1(µ)

]
,

since limξ→+∞ ŷ±(ξ) = α−1(δ±)
α−1(µ) .

On the other hand, from the first diagram of (26) we observe that if y(x) is a solution
associated with an external perturbation u(x) ∈ Uδ, then y(x) = α(ŷ(α−1(x))) for each
x ∈ [α(0), b], that is

y(x) = α

(∫ α−1(x)

0
e−α−1(µ)ηû(α−1(x) − η) dη

)
, x ∈ [α(0), b].
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Furthermore, if α is a continuous function, then we obtain the equality Qα = α(Q̂) and,
as a particular case, we note that the boundary of the reachability tube Qα is described
by the functions y±(x) = α(ŷ±(α−1(x))), where

y±(x) = α

(
α−1(δ±)
α−1(µ)

(
1 − e−α−1(µ)α−1(x)

))
.

Equivalently,
y±(x) = (δ±

α⊘ µ) α⊙ α(1 − e−α−1(µ)α−1(x)). (29)
The solutions in (29) are obtained as an effect of the external perturbations u±(x) = δ±
for each x ∈ [α(0), b]α. We also note that u±(x) = α(û±(α−1(x))) for each x ∈ [α(0), b]α.
Furthermore, due to the order of the non-Newtonian real numbers, it follows that if
u(x) ∈ Uδ is an arbitrary external perturbation, then the following inequalities are
satisfied

y−(x) α≤ y(x) α≤ y+(x), x ∈ [α(0), b].
We note that as a consequence of this property, the external perturbations u±(x) will be
called worst non-Newtonian external perturbations. On the other hand, as a consequence
of the previous inequalities, we can observe that

Q̂ = {(x, λ α⊙ y−(x) α⊕ (α(1) α⊖ λ) α⊙ y+(ξ))⊤ ∈ R2
α |

with λ ∈ [α(0), α(1)]α and x ∈ [α(0), b]}.

Finally, we observe that Qα ⊂ R̄+
α ×

[
δ−

α⊘ µ, δ+
α⊘ µ

]
α
, since αlimx→α(+∞) y

±(x) =
δ±

α⊘ µ, where α(+∞) = limξ→+∞ α(ξ).
We summarize the results obtained as follows.

Theorem 4.1. Consider the non-Newtonian first-order linear differential equation

dαy(x)
dαx

α⊕ µ
α⊙ y(x) = u(x), y(α(0)) = α(0),

where µ is a non-Newtonian real number and u(x) ∈ Uδ is an external perturbation.
Then the solution to this non-Newtonian first-order linear differential equation is

y(x) = α

(∫ α−1(x)

0
e−α−1(µ)ηû(α−1(x) − η) dη

)
, x ∈ [α(0), b].

On the other hand, the boundary of the reachability tube Qα is represented by the graph
of the functions

y±(x) = α

(
α−1(δ±)
α−1(µ)

(
1 − e−α−1(µ)α−1(x)

))
, x ∈ [α(0), b].

An analogous result can be obtained if we consider an initial condition y(α(0)) ̸= α(0).
The following example shows the reachability tube obtained in a non-Newtonian

first-order linear differential equation using some particular cases of non-Newtonian
calculus.
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Example 4.2. We choose µ = α(2) and δ± = α(±1), and consider as a particular
case the following non-Newtonian first-order linear differential equation defined on
[α(0), α(2)]α:

dαy(x)
dαx

α⊕ α(2) α⊙ y(x) = u(x), y(α(0)) = α(0),

with u(x) ∈ Uδ, where Uδ = {u(x) ∈ Cα[α(0), α(2)] | δ−
α≤ u(x) α≤ δ+}. We obtain the

following three particular cases of the functions y±(x) that describe the boundary of the
reachability tube Qα when x ∈ [α(0), α(2)]. We note that all three graphs are plotted
in R2 to compare the structure of the reachability tube Qα in each case.

If we choose α(x) = id(x), that is, if we consider a Newtonian calculus, then the
boundary of the reachability tube Qα is described by the functions

y±(x) = ±(1 − e−2x), x ∈ [0, 2]. (30)

An illustration of the corresponding reachability tube is shown in Figure 1.

0 1 2 3 4 5 6 7 8
−2
−1

0
1
2

x

y
±

(x
)

Fig. 1. Reachability tube in a Newtonian calculus with boundary described by the functions (30).

On the other hand, if we assume that α(x) = exp(x), that is, if we consider a
multiplicative calculus, or geometric calculus, then the boundary of the reachability
tube Qα is described by functions

y±(x) = e
± 1

2

(
1− 1

x2

)
, x ∈ [1, e2]exp. (31)

An illustration of the corresponding reachability tube is shown in Figure 2.
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±
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)

Fig. 2. Reachability tube in a multiplicative calculus, or geometric calculus, with boundary described
by the functions (31).

Finally, if we consider that α(x) = κ−1 sinh(κx), that is, if we consider a Kaniadakis
κ-calculus, then the boundary of the reachability tube Qα is described by the functions

y±(x) = ±κ−1 sinh
(

1
2κ
(
1 − e−2κ sinh(κx)

))
, x ∈

[
0, κ−1 sinh(2κ)

]
κ
. (32)
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An illustration of the corresponding reachability tube is shown in Figure 3 with κ = 9
10 .
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2

x
y

±
(x

)
Fig. 3. Reachability tube in a Kaniadakis κ-calculus with boundary described by the functions (32).

Other values for the parameters and other α-generators can be chosen to obtain
similar illustrations of the corresponding reachability tube Qα.

5 Conclusion

This paper presented the algebraic and topological properties of non-Newtonian real
numbers, as well as some elements of non-Newtonian differential calculus. Using the
definition of a non-Newtonian derivative, a non-Newtonian first-order linear differential
equation that admits external perturbations has been considered, and for this, the
problem of determining the reachability tube has been posed.
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