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Abstract: Problems associated with nonlinearity in predator-prey and the chaotic nature
embedded in the Lorenz system place a significant challenge on numerical methods for their
solutions. Some numerical methods may become unstable as the step size increases. In this
study, a fifth-order A(α)-stable (α = 89.9°) k-step block hybrid Adams-Moulton method
(BHAMM) was derived incorporating 16

9 as an off-step interpolation point using multistep
collocation and matrix inversion techniques. The choice of the off-step point of the BHAMM
was in the upper part of the interval of interpolation points. It was shown that the derived
block method was consistent and zero-stable, hence a convergent block method. Numerical
simulations of predator-prey and Lorenz systems with the newly derived k = 3 BHAMM
indicated that it was adequate and compared well with Matlab ode23s.
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1 Introduction

Mathematical models have a tendency to predict species interactions and atmospheric
convection. Two of such models are predator-prey and Lorenz systems. While predator-
prey interactions emerged from the study of ecology, the Lorenz system proposed by
[13] came from the study of atmospheric convection. Some studies in the literature have
considered predator-prey dynamics using ordinary differential equations (ODEs). Several
other types of models have been derived - in extended form - to investigate species
interactions, such as the Lotka-Volterra, Rosenzweig-MacArthur and Holling-Tanner
models. The predator-prey model considered in this study is of the form:

du
dt

= αu − βuv
dv
dt

= δuv − γv
(1.1)

with variables u and v showing both prey and predator populations as well as parameters
α, β, δ and γ representing how the variables interact. For further details on the predator-
prey system, readers may check [6, 11, 16].
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Other studies in the literature have considered the Lorenz system, which consists of a
system of three coupled ODEs with a tendency to show convection within a fluidized
layer and exhibit sensitive dependence on initial conditions. It was noted that little
changes in the starting values of the Lorenz system can produce drastically different
trajectories. The Lorenz system considered in this study is of the form:

dx
dt

= −αx + αy
dy
dt

= rx − y − xz
dz
dt

= xy − bz
(1.2)

where α, r and b are constants defined in [13]. Further details on the Lorenz system can
be found in [1–3, 14]. However, nonlinearity and stiffness embedded in predator-prey and
Lorenz systems place a significant challenge on numerical methods for their solutions.
Various numerical methods have been proposed such as Runge-Kutta methods and
multistep implicit methods among others. Runge-Kutta methods have wide range
of applications but they can significantly accumulate errors due to their exponential
sensitivity to chaos. Multistep methods have the advantage of improving stability in
chaos, but some of their classes have limited capability for handling large temporal steps
usually required for long-term dynamics. Implicit methods possess good stability but
with increased costly computational complexity [1, 4, 5, 17, 20, 22]. Several forms of
numerical methods have been used in the literature to solve nonlinear and stiff problems
such as predator-prey and Lorenz systems; for further research on block numerical
methods and other integrators, readers can consult [10, 12, 18, 19, 21].

In this study, we focus on block hybrid form of Adams-Moulton method because the
classical Adams-Moulton method has some drawbacks concerning stability. Motivation to
embark on the research centres on deriving an implicit numerical method with numerical
stability for moderate time steps crucial for capturing long term dynamics between
species in predator-prey and Lorenz systems while offering accuracy and computational
efficiency which can be obtained from block methods and at the same time capable of
minimizing function evaluations thereby leading to computationally efficient solutions.
The block hybrid Adams-Moulton method - due to its hybrid structure - possess
captivating capability by leveraging past solution values to solve challenging ODEs from
different models including predator-prey and Lorenz systems with adequate stability,
efficiency and accuracy thereby offering advantages over single-step methods.

The aim of this study is to develop a fifth-order A(α)-stable k-step block hybrid
Adams-Moulton method for solutions of predator-prey and Lorenz systems. This will be
achieved with incorporation of an off-step interpolation point. The specific objectives
include analysis of the block method and its numerical test on the models. The remaining
part of the paper is arranged as follows: section 2 considers derivation of the block
method, section 3 investigates convergence analysis. Section 4 handles stability analysis
and plots of the region of absolute stability, section 5 considers numerical simulations of
the models and conclusion comes up in section 6.

2 Derivation of the block method

Block integrator which shall be considered in this study will be derived from some
continuous k-step linear multistep methods whose coefficients are assumed polynomials
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obtained by the use of multistep collocation [15] for the solution of the system of first
order ordinary differential equations. To this end, consider a polynomial

y(x) =
t−1∑
j=0

αj(x)y(xn+j) + h
m−1∑
j=0

βj(x)f(x̄j, y(x̄j)), xn ≤ x ≤ xn+k (2.1)

of degree p = t + m − 1, t > 0, m > 0, where αj(x) and βj(x) are continuous coefficients
defined by

αj(x) =
t+m−1∑

i=0
αj,i+1x

i; j ∈ {0, ..., t − 1} (2.2)

hβj(x) = h
t+m−1∑

i=0
βj,i+1x

i; j ∈ {0, ..., m} (2.3)

where xn+j in (2.1) are interpolation points t(0 < t ≤ k) arbitrarily chosen from
{xn, xn+1, ..., xn+k−1} and m are collocation points.

The coefficients αj(x) and βj(x) of (2.1) defined by (2.2) and (2.3) can be obtained
from columns of matrix C defined by

C = D−1 (2.4)

where D is multistep collocation matrix defined by

D =



1 xn x2
n . . . xt+m−1

n

1 xn+1 x2
n+1 . . . xt+m−1

n+1
. . . . . . .
. . . . . . .
. . . . . . .
1 xn+t−1 x2

n+t−1 . . . xt+m−1
n+t−1

0 1 2x̄0 . . . (t + m − 1)x̄t+m−1
0

. . . . . . .

. . . . . . .

. . . . . . .
0 1 2x̄m−1 . . . (t + m − 1)x̄t+m−1

m−1



(2.5)

and matrix D has dimension (t + m) × (t + m), using matrix operations on (2.4) gives
DC = I where I is an identity matrix of dimension (t + m). For more elaborate
description of equations (2.1)-(2.5), readers should see [15]. We shall consider continuous
formulation of hybrid k-step Adams-Moulton method subsequently.

2.1 Continuous formulation of three-step Adams-Moulton method incorporating
one off-grid interpolation point

Let k = 3, t = 2, m = 4 and let x = xn+ 16
9

be off-grid interpolation, then (2.1) becomes

y(x) = α1(x)yn+1 + α 16
9

(x)yn+ 16
9

+ h [β0(x)fn + β1(x)fn+1+β2(x)fn+2+β3(x)fn+3] (2.6)
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and (2.5) gives

D =



1 xn+1 x2
n+1 x3

n+1 x4
n+1 x5

n+1
1 xn+ 16

9
x2

n+ 16
9

x3
n+ 16

9
x4

n+ 16
9

x5
n+ 16

9
0 1 2xn 3x2

n 4x3
n 5x4

n

0 1 2xn+1 3x2
n+1 4x3

n+1 5x4
n+1

0 1 2xn+2 3x2
n+2 4x3

n+2 5x4
n+2

0 1 2xn+3 3x2
n+3 4x3

n+3 5x4
n+3


. (2.7)

Using Maple software for C = D−1 and substitution of the continuous coefficient into
(2.6) gives the following continuous formulation of the three-step hybrid Adams-Moulton
method as

y(x) =
(
− 183808

190169h5

(
h4 +

(
9x
16 − 9xn

16

)
h3 − 53541(x−xn)2h2

5744

+75087(x−xn)3h
11488 − 6561(x−xn)4

5744

) (
9xn

16 + h − 9x
16

))
yn+1

+
(

373977(h−x+xn)2

190169h5

(
h3 + (2x − 2xn) h2 − 33(x−xn)2h

19 + 6(x−xn)3

19

))
yn+ 16

9

+
(
−1168(h−x+xn)2

3881h4

(
h2 +

(
−111x

146 + 111xn

146

)
h + 121(x−xn)2

876

) (
9xn

16 + h − 9x
16

))
fn

+
(
−147136h−147136x+147136xn

81501h4

(
h3 +

(
25x
16 − 25xn

16

)
h2 − 29641(x−xn)2h

18392

+11595(x−xn)3

36784

) (
9xn

16 + h − 9x
16

))
fn+1 +

(
−5248(h−x+xn)2

11643h4

(
h2 +

(
41x
16 − 41xn

16

)
h

−1077(x−xn)2

1312

) (
9xn

16 + h − 9x
16

))
fn+2 +

(
320(h−x+xn)2

11643h4

(
h2 +

(
41x
16 − 41xn

16

)
h

−113(x−xn)2

80

) (
9xn

16 + h − 9x
16

))
fn+3



. (2.8)

Evaluating (2.8) at x = xn, x = xn+2 and x = xn+3 and its derivatives at x = xn+ 16
9gives the following discrete schemes;

yn+1 = −190169
183808 yn + 373977

183808 yn+ 16
9

− 3577
11488hfn − 16093

8616 hfn+1 − 2009
4308 hfn+2

+ 245
8616hfn+3

yn+ 16
9

= yn+1 − 46991
6298560hfn + 80941

262440hfn+1 + 27167
31680 hfn+ 16

9
− 51107

131220hfn+2

+ 75803
8660520hfn+3

yn+2 = − 26344
190169yn+1 + 216513

190169 yn+ 16
9

+ 14
11643hfn − 3683

81501hfn+1 + 1864
11643hfn+2

− 19
11643hfn+3

yn+3 = 347633
190169 yn+1 − 157464

190169 yn+ 16
9

− 121
3881hfn + 61952

81501 hfn+1 + 18755
11643 hfn+2

+ 3542
11643hfn+3



. (2.9)

Equation (2.9) is the block hybrid Adams-Moulton method for this study, its conver-
gence analysis and region of absolute stability will be considered subsequently.

3 Convergence analysis of the block method (2.9)

In this section, convergence analysis of the derived block method (2.9) will be investi-
gated. We first check zero stability, hence reformulate (2.9) using approach found in
Fatunla [8] as;

M (1)Yn+i = M (0)Yn−i + h(B(1)Fn+i + B(0)Fn−i) , i ∈ R (3.1)
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where

M (1) =


1 −373977

183808 0 0
−1 1 0 0

26344
190169 −216513

190169 1 0
−347633

190169
157464
190169 0 1

 , M (0) =


0 0 0 −190169

183808
0 0 0 0
0 0 0 0
0 0 0 0

 (3.2)

and

B(1) =


−16093

8616 0 −2009
4308

245
861680941

262440
27167
31680 − 51107

131220
75803

8660520
− 3683

81501 0 1864
11643 − 19

1164361952
81501 0 18755

11643
3542
11643

 , B(0) =


0 0 0 − 3577

11488
0 0 0 − 46991

6298560
0 0 0 14

11643
0 0 0 − 121

3881

 . (3.3)

The first characteristics polynomial is given as,

ρ(λ) = det(λM (1) − M (0))
= |λM (1) − M (0)|
= 0.

(3.4)

Thus, this leads to,

ρ(λ) =

∣∣∣∣∣∣∣∣∣λ


1 −373977
183808 0 0

−1 1 0 0
26344
190169 −216513

190169 1 0
−347633

190169
157464
190169 0 1

 −


0 0 0 −190169

183808
0 0 0 0
0 0 0 0
0 0 0 0


∣∣∣∣∣∣∣∣∣

= 190169
183808λ4 − 190169

183808λ3

⇒ λ1 = 1, λ2 = 0, λ3 = 0, λ4 = 0. (3.5)

Since |λi| ≤ 1, i = 1, 2, 3, 4, then by [7], the block method (2.9) is zero stable and has
schemes of order p = 5 with error constants − 76489

13957920 , − 671251
765275040 , 2827

18861660 , and − 106843
18861660

respectively. Since the block method (2.9) has order p > 1 and is zero stable, then it is
convergent by [9].

4 Region of absolute stability of BHAMM (2.9)

Root boundary locus method is used to obtain absolute stability region of the method
(2.9). The BHAMM (2.9) is said to have a region of absolute stability RAs, if it is
absolutely stable for all

∧
h ∈ RAswhere RAs is a region of complex

∧
h − plane, z = hλ

hence we obtain the stability polynomial;

π(r, z) = −190169r4

183808 + 190169r3

183808 + 2091859r3z4

33085440 + 1331183r4z
827136 − 2472197r4z2

2205696 + 4373887r4z3

9925632

−190169r4z4

2067840 + 2472197r3z
1654272 + 2091859r3z2

2205696 + 6655915r3z3

19851264

whose plot is shown in Figure 1.
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Fig. 1. Region of absolute stability of (2.9)

Fig. 2. Detail near the origin of the region of absolute stability of (2.9).

Observe that Figure 1 appeared as if the block method (2.9) is A-stable but detailed
outlook of the same figure when rescaled as shown in Figure 2 indicated that it is an
A(α)-stable method. However, the scale of enlargement is very large which is why the
pointed part in Figure 2 is conspicuous. Further calculations on the extent of its angle α
give α = 89.99°. The extent of the size of the angle is the reason why Figure 1 appeared
as if the block method is A-stable. Therefore the block method (2.9) is A(α)-stable.

5 Numerical simulation

The solutions of (1.1) using parameters α = 1.2, β = 0.6, δ = 0.3, γ = 0.8, h = 0.1 for
initial conditions u(0) = 20 and v(0) = 5 are shown in Figure 3.
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Fig. 3. Comparison of BHAMM (2.9) with Matlab ode23s for parameters α = 1.2, β = 0.6, δ =
0.3, γ = 0.8, h = 0.1 for solutions of (1.1).

It can be seen from Figure 3 that the newly derived BHAMM (2.9) compete favourably
close to the inbuilt Matlab ode23s designed for stiff problems. The solutions shown in
the Figure 3 indicate further that the block method is capable of handling nonlinear
ODEs. Though not shown here, the new block method possess ability to handle nonstiff
problems of ODEs as well.

Analogously, the solutions to (1.2) using parameters α = 10, r = 23.5, b = 8
3 , x(0) =

−15.8, y(0) = −17.48, z(0) = 35.64, h = 0.01 are shown in Figure 4 for solutions of x
and y only.

Fig. 4. Solutions of (1.2) using BHAMM (2.9) is compared with Matlab ode23s for parameters
α = 10, r = 23.5, b = 8

3 , h = 0.01 for x and y variables only.

Observe also that for Figure 4, variables x and y only were shown in the dynamics of
the Lorenz system to enable us view oscillatory nature of x and y adequately. It can
be seen that the BHAMM (2.9) showed solutions which are similar to those generated
by the inbuilt Matlab ode23s. Also for all the three variables x, y and z, solutions to
(1.2) are shown in Figure 5 using same parameters α = 10, r = 23.5, b = 8

3 , x(0) =
−15.8, y(0) = −17.48, z(0) = 35.64, h = 0.01.
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Fig. 5. Simulation of (1.2) for variables x, y and z using BHAMM (2.9) compared with Matlab
ode23s for parameters α = 10, r = 23.5, b = 8

3 , h = 0.01..

From the results also presented in Figure 5, the in-built Matlab ode23s produced
similar results to those results simulated from BHAMM (2.9).

6 Conclusion

In this research, a fifth-order A(α)-stable k-step block hybrid Adams-Moulton method
was developed for solutions of predator-prey and Lorenz systems. The feasibility of
the block hybrid method which incorporated 16

9 as an off-grid interpolation point was
based on multistep collocation with the use of the matrix inversion technique. This
approach modified the classical Adams-Moulton method, thereby improving its very
limited stability property for numerical simulation of nonlinear and chaotic systems.
Results obtained from use of the newly derived block hybrid method were compared to
those obtained from in-built Matlab ode23s. It was shown that the fifth-order, three-step
block hybrid method competes favorably with in-built Matlab ode23s for nonlinear and
chaotic systems.
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