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Abstract: In this paper, we investigate the classical identities of the repunit sequence with
integer indices in light of the properties of Horadan-type sequences. We highlight particularly
the Tagiuri-Vajda identity and Gelin-Cesàro identity. Additionally, we prove that no repunit is
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of repunit rn by a prime p and its powers.
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1 Introduction

For n natural, consider {hn} the Horadam sequence defined by the recurrence relation
of second order, where p and q are fixed integers, such that

hn+1 = phn + qhn−1, for all n ≥ 1, (1.1)

with initial conditions h0 = a and h1 = b. This sequence like was introduced by
Horadam [1, 2], and it generalizes many sequences with the characteristic equation of
recurrence relation of form x2 − px − q = 0. More general results about the Horadam
sequence can be found in [1, 3].

In Equation (1.1), if we let p = 11; q = −10; a = 0; and b = 1; then the Horadam
sequence is specified in the repunit sequence. The repunit numbers {rn}n≥0 are the terms
of the sequence {0, 1, 11, 111, 1111, 1111, . . .} where each term satisfies the recursive
formula rn+1 = 10rn + 1 for all n ≥ 1 and r0 = 0, the sequence A002275 in OEIS [4].
Santos and Costa [5] showed that this sequence too satisfies the Horadam recursive
recurrence

rn+1 = 11rn − 10rn−1, for all n ≥ 1, (1.2)

with initial conditions r0 = 0 and r1 = 1. Some work too explore the connections
of repunit sequence {rn}n≥0 with the Fibonacci-type or Lucas-type sequence, again a
Horadam-type sequence, ln+1 = pln − qln−1, for all n ≥ 1, p and q are fixed, and l1 and
l0 are given, see instance [6, 7].
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This article is organized into distinct sections: Section 2 revisits some concepts related
to sequence repunits, such as Horadam recurrence and Binet’s formula. Section 3
explores classical identities for repunit sequence with integer indices, highlighting the
Tagiuri-Vajda, D’Ocagne, Catalan, Cassini, and Gelin-Cesàro identities. Section 4 shows
the relationships between repunits and powers with natural exponents, including proof
that no repunit number can be a power of any natural number. In Section 5 investigates
the divisibility relation between a prime p and the composite repunit rpn−1. Finally,
Section 6 we present the partial sums of the terms in the sequence. Even though the
repunit sequence is a Horadam-type sequence, this is the first work to determine the
Tagiuri-Vajda, and Gelin-Cesàro identities of the repunit sequence.

2 Repunit numbers and Binet formula

In this section, we establish some recurrence relations and the Binet formula for
repunit sequence for all integers n.

See that the difference equation associated with the sequence of repunit {rn}n≥0 is

rn+1 = 11rn − 10rn−1, for all n ≥ 1, (2.1)

which has as its Horadam-type characteristic equation r2 − 11r + 10 = 0, and its real
roots are r1 = 10 and r2 = 1. According [8] the equation r2 + pr + q = 0 has distinct
roots r1 and r2, and then the sequences rn = c1(r1)n + c2(r2)n, for n ≥ 0, and with c1,
c2 real numbers are solutions of Equation (2.1). Let us determine the constants c1 and
c2, considering that r0 = 0 and r1 = 1, and we obtain the linear system,{

0 = c1 + c2

1 = 10c1 + c2 .

We find c1 = 1
9 and c2 = −1

9 . So we have that

rn = 10n − 1
9 , for all n ≥ 0. (2.2)

The Equation (2.2) presents the classic and well-known Binet’s formula for the sequence
of repunit {rn}n≥0, see the references [9–11].

In Costa and others [12] the repunit sequence {rn}n≥0 the was extended to negative
subscripts this way. Let n ≥ 1, then the negative index n-th repunit numbers is defined
as

r−n = − rn

10n
. (2.3)

It follows from the definition that repunit sequence with negative index is the set of
elements given by

{r−n}n≥1 =
{

− 1
10 , − 11

102 , −111
103 , . . .

}
= {−0, 1; −0, 11; −0, 111, . . .}.

The first few repunit numbers with negative subscript are given in the following
Table 1, with −8 ≤ n ≤ −1:
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n -8 -7 -6 -5 -4 -3 -2 -1

rn - 0,11111111 -0,1111111 -0,111111 -0,11111 -0,1111 -0,111 -0,11 -0,1

Table 1. Repunit numbers at negative index

According [12], observation of Table 1, we conclude that the repunit sequence with
negative index satisfies the recurrence relation

r−(n+1) = 11
10r−n − 1

10r−(n−1) with r−1 = −0, 1 and r−2 = −0, 11 ; (2.4)

for n = 1, 2, 3, . . . .

Note that the recurrence r−(n+1) = 11
10r−n− 1

10r−(n−1) has Horadam-type characteristic
equation given by

r2 − 11
10r + 1

10 = 0 , (2.5)

whose roots are r1 = 1
10 and r2 = 1. We find c1 = −1

9 and c2 = 1
9 . Then, the Binet

formula is as follows.

Proposition 2.1. [12] (Binet’s formula) For all n ∈ N, we have

r−n = −10n − 1
9 · 10n

. (2.6)

3 Some Classical Identities

In this section, we establish some classical identities for the repunit sequence for all
integers n, for example, the Tagiuri-Vajda, Catalan, Cassini, and d’Ocganes identities.
The Tagiuri-Vajda and Gelin-Cesàro identities are presented for the first time in this
work. The identities of Catan, Cassini, and d’Ocganes have already appeared in some
previous work, however the demonstration presented is different from the reference
indicated.

3.1 Identities with subscript positive

First the Tagiuri-Vajda’s Identity:

Theorem 3.1. Let m, s, k be any natural numbers. We have

rm+srm+k − rmrm+s+k = 10mrsrk.

Proof. Using Equation (2.2) again we obtain that

rm+srm+k − rmrm+s+k

=
(

10m+s − 1
9

)(
10m+k − 1

9

)
−
(10m − 1

9

)(10m+s+k − 1
9

)

= 10m+s+k − 10m+k − 10m+s + 10m

81 = (10m+k − 10m)(10s − 1)
81

= 10m

(
10k − 1

9

)(10s − 1
9

)
,
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and we have the validity of the result.

The other identities will follow as a consequence of the Tagiuri-Vajda’s Identity,
Theorem 3.1, as we will see below.

Proposition 3.2. [5] (d’Ocagne’s Identity) Let m, n be any natural. For m ≥ n we
have

rmrn+1 − rm+1rn = 10nrm−n .

Proof. First, we consider k = n − m and s = 1 in Theorem 3.1, so

rm+1rn − rmrn+1 = 10mrn−m .

Note that n − m < 0, using to Equation 2.3 we obtain that

rm+1rn − rmrn+1 = 10m
(

− rm−n

10m−n

)
= −10nrm−n ,

and we get the result.

Similar to Proposition 3.2 we have the Catalan’s Identity.

Proposition 3.3. [5]. Let m, n be any natural. For m ≥ n we have

(rm)2 − rm−nrm+n = 10m−n · (rn)2 .

Proof. Just take s = n and k = −n in Theorem 3.1 we have that

rm+nrm−n − (rm)2 = 10m

(
10−n − 1

9

)(10n − 1
9

)

= 10m

( 1−10n

10n

9

)(10n − 1
9

)
= 10m

(
−10n − 1

10n · 9

)(10n − 1
9

)
= −10m−n

(10n − 1
9

)2
.

Now, the result will follow with the help of Equations (2.2).

Making n = 1, without much effort, follows directly from Proposition 3.3 that:

Proposition 3.4. [5]. (Cassini’s Identity) For all m ≥ 1, we have

(rm)2 − rm−1rm+1 = 10m−1 .

The following result presents an interesting application of Cassini’s Identity, as shown
below:
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Proposition 3.5. For any positive integer m, the Diophantine equation x2 − 11xy +
10y2 = 10m−1 has infinitely many solutions.

Proof. By combining Cassini’s Identity (Proposition 3.4) with Equation (1.2), we obtain
the following equation: (rm)2 − 11rm−1rm + 10(rm−1)2 = 10m+1. Setting rm = x and
rm−1 = y yields the desired result.

Now, we present the Gelin-Cesàro identity for the repunit sequence below.

Proposition 3.6. Let m be any natural number. Wave

rm−2rm−1rm+1rm+2 = r4
m − 111 · 10m−2 · r2

m + 121 · 102m−3

Proof. By setting n = 2 in Proposition 3.3, we obtain the following equation:

(rm)2 − rm+2rm−2 = 121 · 10m−2 . (3.1)

Multiplying Equation (3.1) with Cassini’s Identity, Proposition 3.4, leads to the desired
result

To conclude this subsection, we present an interesting result that explores combinations
of some terms in the repunit sequence. This result has similarities with the Tagiuri-Vajda,
Catalan, Cassini, and d’Ocagne identities discussed previously. Before an auxiliary
result.

Lemma 3.7. Let m be any natural. We have

rm+2rm+3rm+4 = rm+1rm+2rm+6 + 1221 · 10m+1rm+2.

Proof. Using the Equation 2.2, we get

rm+2rm+3rm+4 =
(

10m+3 − 1
9

)(
10m+4 − 1

9

)
rm+2

=102m+7 − 10m+3 − 10m+4 + 1
81 rm+2

=10m+1(10m+6 − 102 − 103) + 1
81 rm+2 ,

the same way,

rm+1rm+6rm+2 =
(

10m+1 − 1
9

)(
10m+6 − 1

9

)
rm+2

=102m+7 − 10m+6 − 10m+1 + 1
81 rm+2

=10m+1(10m+6 − 105 − 1) + 1
81 rm+2 .
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So

rm+2(rm+3rm+4 − rm+1rm+6) =10m+1(105 − 102 − 102 + 1)
81 rm+2

=10m+1
(

102 − 1
9

)(
103 − 1

9

)
rm+2

=1221 · 10m+1rm+2

Proposition 3.8. Let m be any natural. We have

(rm+3)3 − rm+1rm+2rm+6 = 10m+1(1331rn+2 − 100rn+1) .

Proof. By Cassini’s Identity, Proposition 3.4, we have that (rm+3)2 − rm+2rm+4 = 10m+2.
So (rm+3)3 − rm+2rm+3rm+4 = 10m+2rm+3. According Lemma 3.7, we get

(rm+3)3 − rm+2rm+3rm+4 = 10m+2rm+3

(rm+3)3 − rm+1rm+2rm+6 = 1221 · 10m+1rm+2 + 10m+2rm+3

= 10m+1(1221rm+2 + 10rm+3)
= 10m+1(1331rn+2 − 100rn+1) .

Since rm+3 = 11rm+2 − 10rm+1, Equation (2.1).

3.2 Identities with subscript negative

Similarly, in the following result, we show the Tagiuri-Vajda identity for the negative
subscripts of rn.

Theorem 3.9. Let m, s, k be any natural numbers. We have

r−(m+s)r−(m+k) − r−mr−(m+s+k) = 10−mr−sr−k .

Proof. Using Binet’s Formula defined by the Equation (2.6), we obtain the following
expression:

r−(m+s)r−(m+k) − r−mr−(m+s+k)

=
(

10m+s − 1
9 · 10m+s

)(
10m+k − 1
9 · 10m+k

)
−
(10m − 1

9 · 10m

)(10m+s+k − 1
9 · 10m+s+k

)

= 10m+s+k − 10m+k − 10m+s + 10m

81 · 102m+s+k
= (10m+k − 10m)(10s − 1)

81 · 102m+s+k

= 10−m

(
−10k − 1

9 · 10k

)
r−s = 10−mr−kr−s ,

and we have the validity of the result.

Again the other identities will follow as a consequence of the Tagiuri-Vajda’s Identity,
Theorem 3.9, as we will see below. Firt, we present the D’Ocagne Identity for the
negative indices of rn.
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Proposition 3.10. [12] Let m, n be any natural. For m ≥ n we have

r−(m+1)r−n − r−mr−(n+1) = rm−n

10m+1 .

Proof. he result follows directly from Theorem 3.1, by substituting k = n − m and
s = 1.

Similar to Proposition 3.10 we have the Catalan’s Identity.

Proposition 3.11. [12] Let m, n be any natural. For m ≥ n we have

(r−m)2 − r−(m−n)r−(m+n) = (rn)2

10(m−n) .

Proof. Just take s = n and k = −n in Theorem 3.9 and the result will follow.

When substituting n = 1 in Proposition 3.11, we obtain

Proposition 3.12. [12] (Cassini’s Identity) For all m ≥ 1, we have

(r−m)2 − r−(m−1)r−(m+1) = 10−(m−1) .

We conclude this section we present the Gelin-Cesàro identity can also be extended
to negative indices. The resulting identity for negative indices is presented below:

Proposition 3.13. For all m ≥ 1, we have

r−(m−2)r−(m−1)r−(m+1)r−(m+2) = r4
−m − 111 · 10−(m−2) · r2

−m + 121 · 10−(2m+3) .

Proof. The desired result can be obtained by simply multiplying the results of Proposi-
tion 3.11 and Proposition 3.12, setting n = 2 in both cases.

Lemma 3.14. Let m be any natural number. We have

r−(m+2)r−(m+3)r−(m+4) = r−(m+1)r−(m+2)r−(m+6) + 1221 · 10−(m+6)r−(m+2).

Proof. Using the Equation 2.6, we get

r−(m+2)r−(m+3)r−(m+4) =
(

10m+3 − 1
9 · 10m+3

)(
10m+4 − 1
9 · 10m+4

)
r−(m+2)

=102m+7 − 10m+3 − 10m+4 + 1
81 · 102m+7 r−(m+2)

=10m+1(10m+6 − 102 − 103) + 1
81 · 102m+7 r−(m+2) ,
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the same way,

r−(m+1)r−(m+2)r−(m+6) =
(

10m+1 − 1
9 · 10m+1

)(
10m+6 − 1
9 · 10m+6

)
r−(m+2)

=102m+7 − 10m+6 − 10m+1 + 1
81 · 102m+7 r−(m+2)

=10m+1(10m+6 − 105 − 1) + 1
81 · 102m+7 r−(m+2)

.

So

r−(m+2)(r−(m+3)r−(m+4) − r−(m+1)r−(m+6)) =10m+1(105 − 102 − 102 + 1)
81 · 102m+7 r−(m+2)

= 10m+1

102m+7

(
102 − 1

9

)(
103 − 1

9

)
r−(m+2)

=1221 · 10−(m+6)r−(m+2)

In conclusion, we demonstrate that the following identity holds for negative indices:

Proposition 3.15. Let n be any natural number. Wave

r3
−(n+3) − r−(n+1)r−(n+2)r−(n+6) = 10−(m+1)

( 12221
100000r−(n+2) − 1

100r−(n+1)

)
.

Proof. By Cassini’s Identity, Proposition 3.12, we have that (r−(m+3))2−r−(m+2)r−(m+4) =
10(−m+2). So (r−(m+3))3 − r−(m+2)r−(m+3)r−(m+4) = 10−(m+2)r−(m+3).

According Lemma 3.14, we get

(r−(m+3))3 − r−(m+2)r−(m+3)r−(m+4) = 10−(m+2)r−(m+3)

(r−(m+3))3 − r−(m+1)r−(m+2)r−(m+6) = 1221
100000 · 10−(m+1)r−(m+2) + 10−(m+2)r−(m+3)

= 10−(m+1)
( 1221

100000rm+2 + 1
10rm+3

)
= 10−(m+1)

( 12221
100000r−(n+2) − 1

100r−(n+1)

)
.

Since r−(m+3) = 11
10r−(m+2) − 1

10r−(m+1), Equation (2.4)

4 Repunit number are not powers

We remember that a natural number m written as a power of natural numbers, if
there are natural numbers a and k such that m = ak.

In [5] it is shown that for n ≥ 2, no repunit rn is an even power or a sum of two even
powers. In this section, we will extend this result to any natural number n ≥ 2.

The main result of this section is
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Theorem 4.1. For n ≥ 2, no rn is a power of natural numbers.

The Theorem 4.1 is a direct consequence of the next two results.

Proposition 4.2. [5] For n ≥ 2, neither rn is a even power or a sum of two even powers.

Proposition 4.3. For n ≥ 3, neither rn is an odd power.

The proof of Propositions 4.2 can be consulted at [5], and the Proposition 4.3 will be
demonstrated in subsection below.

4.1 Odd power

For every natural number m, let φ(m) be the quantity of natural numbers less than or
equal to m that are relatively prime to m, meaning gcd(a, m) = 1 for all a ≤ m, where
gcd(a, b) is the greatest common divisor between the numbers a e b. The function φ(m)
is known as the Euler’s totient.

To present the result, we will make use of the following two auxiliary results.

Lemma 4.4. [13] The equation
xn − 1
x − 1 = ym, x, y, m, n ∈ N, x > 1, y > 1, m > 2, n > 1 ,

has no solution (x, y, m, n) satisfying gcd
(
xφ(x), m

)
= 1, where φ(m) is Euler’s

function of m.

Lemma 4.5. [5, 14] For n ≥ 2, no repunit rn is a fifth power.

Now let us extend the Lemma above to all odd prime p ̸= 5.

Proposition 4.6. Let n ≥ 2 and p ̸= 5 be an odd prime. No repunit rn is a power p.

Proof. By the hypothesis, we have p > 2 a prime number. For all n ≥ 1, let rn be a
repunit number. Using the Binet’s formula, Equation 2.2, we get that

rn = 10n − 1
9 = 1 + 10 + 102 + 103 + . . . + 10n−1 .

According to Lemma 4.4, we can conclude that the Diophantine equation

1 + 10 + 102 + 103 + . . . + 10n−1 = yp ,

does not have integer solutions for any n, y given that gcd
(
10φ(10), p

)
= gcd

(
40, p

)
= 1,

since φ(10) = 4, and p ̸= 5.

Finally, we must show that rn cannot be expressed in the form am for any natural
numbers a and m, where m is odd. So let’s go to:
proof of Proposition 4.3
Let n be a natural number. Consider the repunit number rn, and am any positive
integers a and m where m is odd. Now, will analyze the case where m = pz for an odd
number z. Suppose that, for some n ≥ 2, we have rn = apz. This would imply that
rn is a p power, since rn = (az)p which contradicts Lemma 4.5 if p = 5, or contradicts
Proposition 4.6 if p ̸= 5, and we conclude the demonstration.
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5 Factor p of the repunit number

In [11, 15], we have that for any prime p > 5, then p is a divisor of some repunit,
precisely p divides rp−1. In this section, let us extend the result showing that p is a
divisor of rpn−1. It is also noteworthy that in [10] presenting also a characterization for
a prime factor of a non-prime repunit type rp.

In order to verify the result later, we need an auxiliary result, which we present below:

Lemma 5.1. [16] If a and b are integers and n is a natural number, then a − b divides
an − bn.

Lemma 5.2. [16](Euler-Fermat’s Theorem) Let a and m be natural numbers. If
gcd(a, m) = 1, then aφ(m) ≡ 1 (mod m).

Theorem 5.3. Let n be a positive integer and p a prime with p > 5. Then p divides
rpn−1.

Proof. It follows from Lemma 5.1 that p − 1 divides pn − 1, that is, pn − 1 = (p − 1)k for
some integer k. Since p > 5, then (10k, p) = 1. Therefore, by Euler-Fermat’s Theorem,
Lemma 5.2, we have that (10k)φ(p) ≡ 1 (mod p). Since φ(p) = p − 1, we have that
(10k)(p−1) ≡ 10pn−1 ≡ 1 (mod p) and the result follows.

Making n = 1 in Proposition 5.3, have we:

Corollary 5.4. [15] Let p be a prime number, p > 5, then p divides rp−1.

6 Sum formulas

In this section, we present results on partial sums of terms of the repunit sequence with
n integers. Initially, consider the sequence of partial sums ∑n

k=0 rk = r0 +r1 +r2 +· · ·+rn,
for n ≥ 0, where {rn}n≥0 is the repunit sequence. We have two auxiliary result.

Proposition 6.1. [12] Let {rn}n≥1 be the repunit sequence, then

(a)
n∑

k=0
rk = 10rn − n

9 ,

(b)
n∑

k=0
r2k = 102r2n − nr2

99 ,

(c)
n∑

k=0
r2k+1 = r2n+3 − (n + 1)r2

99 .

Proposition 6.2. [12] Let {r−n}n≥0 be the repunit negative sequence, then

(a)
n∑

k=0
r−k = −n − r−n

9 ,

(b)
n∑

k=0
r−2k = −nr2 − r−2n

99 ,

(c)
n∑

2k=0
r−(2k+1) = −

(n + 1)r2 − r−(2n+1)

99 .
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Now, consider the sequence of alternating partial sums ∑n
k=0(−1)krk = r0 − r1 + r2 −

r3 + · · · + (−1)nrn, for n ≥ 0, being {rn}n≥0 the repunit sequence.

Proposition 6.3. Let {rn}n≥0 be the repunit sequence, then

(a)
n∑

k=0
(−1)krk = 102r2n−r2n+3+r2

99 , if last term is negative ;

(b)
n∑

k=0
(−1)krk = 102r2n−r2n+1

99 , if last term is positive .

Proof. (a) First consider that last term is negative, so

2n+1∑
k=0

(−1)krk = r0 − r1 + r2 − r3 + · · · + r2n − r2n+1

= (r0 + r2 + · · · + r2n) − (r1 + r3 + · · · + r2n+1)

=
n∑

k=0
r2k −

n∑
k=0

r2k+1

According to the Proposition 6.1, items (b) and (c), it follows that:

2n+1∑
k=0

(−1)krk =
n∑

k=0
r2k −

n∑
k=0

r2k+1

= 102r2n − nr2

99 − r2n+3 − (n + 1)r2

99

= 102r2n − r2n+3 + r2

99 .

(b) In which case that last term is positive, so

2(n+1)∑
k=0

(−1)krk = r0 − r1 + r2 − r3 + · · · + r2n − r2n+1 + r2(n+1)

= (r0 + r2 + · · · + r2n + r2(n+1)) − (r1 + r3 + · · · + r2n+1)

=
n+1∑
k=0

r2k −
n∑

k=0
r2k+1 .

As in item (a), apply the Proposition 6.1.

Proposition 6.4. Let {r−n}n≥0 be the repunit negative sequence, then

(a)
n∑

k=0
(−1)kr−k = r2+r−2n−r−2(n+1)

99 , if last term is negative ;

(b)
n∑

k=0
(−1)kr−k = r−2n−r−2(n+1)

99 , if last term is positive .
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Proof. (a) First consider that last term is negative, so

2n+1∑
k=0

(−1)kr−k = r0 − r−1 + r−2 − r−3 + · · · + r−2n − r−(2n+1)

= (r0 + r−2 + · · · + r−2n) − (r−1 + r−3 + · · · + r−(2n+1))

=
n∑

k=0
r−2k −

n∑
k=0

r−(2k+1)

According to the Proposition 6.2, items (b) and (c), it follows that:

2n+1∑
k=0

(−1)kr−k = −nr2 − r−2n

99 + (n + 1)r2 − r−(2n+1)

99

= r2 + r−2n − r−2(n+1)

99 .

(b) In which case that last term is positive, so

2(n+1)∑
k=0

(−1)kr−k = r0 − r−1 + r−2 − r−3 + · · · + r−2n − r−(2n+1) + r−2(n+1)

=
n+1∑
k=0

r−2k −
n∑

k=0
r−(2k+1)

As in item (a), apply the Proposition 6.2.

7 Conclusion

This paper discusses properties regarding the repunit sequence, a Horadam-type se-
quence {hn}n≥0. We primarily delve into the classical identities of the repunit sequence
with integer indices. Additionally, we establish that no repunit can be expressed as an
odd perfect power, thereby extending the previously known result that repunits cannot
be written as powers with even exponents, thus concluding that repunits cannot be
perfect powers. By shedding light on these findings, we aim to inspire other explorations
of this number class. Notably, some aspects of these investigations appear to be pioneer-
ing, suggesting that while the results are obtained through elementary mathematical
methods, they may offer original insights, potentially enriching the field’s understanding.
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