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Abstract: In this work, a mathematical model of Lyme disease transmission dynamics with
two interacting host populations; humans and rodents were formulated. The quarantine class
and public enlightenment campaign parameter are incorporated into human population as
means of controlling the spread of the disease. The existence of Disease-Free Equilibrium is
investigated. Also, the basic reproduction number were obtained and used for the analysis. The
findings revealed that the system is stable when Roh<1 and Ror < 1.From stability analysis, we
observed that public enlightenment campaign and isolation of infected people from susceptible
people will go a long way to reduce the spread of Lyme disease in the population.
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1 Introduction

Lyme disease is acknowledged as one of the most prevalent tick-borne disease infections
in Connecticut, North America. Levi et al. (2012) for which approximately 3,000 cases
are reported annually to the Centers for Disease Control and Prevention (CDC,2022).
Yet data scientists claim that 300,000 may be more accurate, Kuehn (2013). Recently,
the (CDC) estimated that there are approximately 10 times more people diagnosed with
Lyme disease than the yearly reported number. Connecticut was the first to experience
the uncommon arthritic symptoms. By 1977, the first 51 cases of Lyme arthritis were
described, and the Ixodess capularis (black-legged) tick was linked to the transmission of
the disease. During 1982, Borrelia burgdorferi, the bacterium that causes Lyme disease,
was discovered and the first brochure addressing Lyme disease was developed by the
Arthritis Foundation. Serology testing became widely available in Connecticut during
1984. In 1987, Lyme disease became a reportable disease. All physicians were required
to report any and all cases of the disease. By 1988, the news of Lyme disease spread and
national media attention began. The first federal funding for Lyme disease surveillance,
education, and research became available in 1991. Initially, studies and surveys were

Submitted 27 October 2024; Accepted 23 December 2024; Available online: 31 December 2024.
ISSN 2675-8318 Copyright ©2024 INTERMATHS. Published by Edições UESB. This is an Open Access article under the CC BY 4.0 license.

https://doi.org/10.22481/intermaths.v5i2.15503
https://orcid.org/0009-0008-1758-3237
https://orcid.org/0009-0008-7220-9635
mailto:pimoukhedeme@helpmaninstitute.com
http://www2.uesb.br/editora/


conducted to determine the occurrence of the disease in Connecticut and factors that
favor acquiring the disease. This work was done by the Connecticut Department of
Public Health in collaboration with the Connecticut Agricultural Experiment Station,
the University of Connecticut, Yale University, local health departments, and the federal
Centers for Disease Control and Prevention. The current focus of the Program is on
prevention. The emergence of Lyme disease in Connecticut is attributed in large part to
changes in land use. That is, land at one time used for farming has become reforested
and increasingly developed for suburban residential use. These changes favor expansion
of habitat that supports ticks and wildlife and therefore transmission of tick-borne
diseases from animals to people in residential areas and among those who work or
recreate outdoors. This research is motivated by the rising number of Lyme disease
cases in Canada [1] and the absence of a vaccine, which has become a critical issue for
infectious disease specialists. Prevention currently relies on personal protection and
environmental measures to avoid tick bites. Hence, this study proposes a mathematical
model to explore the transmission dynamics of Lyme disease.

2 Transmission Dynamics of Lyme Disease

The Lyme disease bacteria causing human infection in North America, Borrelia
burgdorferi and, rarely, B. mayonii, are spread to people through the bites of infected
ticks. Borrelia burgdorferi is spread primarily by the blacklegged tick (or deer tick,
lxodess capularis) in the northeastern, mid-Atlantic, and north-central United States,
and by the western blackleggedtick (l. pacificus) in the Pacific Coast states. Borrelia
mayonii is rarely found in ticks and has only been detected in blacklegged ticks in the
north-central United States. Blacklegged ticks have a two-to-three-year life cycle. During
this time, they go through four life stages: egg, larva, nymph, and adult. After the
egg hatches, the larva and nymph each must take a blood meal to develop to the next
life stage, and the female needs blood to produce eggs. Larval and nymphal ticks can
become infected with Lyme disease bacteria when feeding on an infected wildlife host,
usually a rodent. The bacteria are passed along to the next life stage. Nymphs or adult
females can then spread the bacteria during their next blood meal. Female ticks infected
with Lyme disease bacteria do not pass them to their offspring. Deer are important
sources of blood for ticks and are important to tick survival and movement to new areas.
However, deer are not infected with Lyme disease bacteria and do not infect ticks. In
most cases, a tick must be attached for 36 to 48 hours or more before the Lyme disease
bacterium can be transmitted. If you remove a tick quickly (within 24 hours), you can
greatly reduce your chances of getting Lyme disease. However, Lyme disease is said to
spread from human to human if not treated for a long time which affects the fetus of
an infected pregnant woman. CDC (2021). Typical symptoms include fever, headache,
fatigue, and a characteristic skin rash called erythema migrants. If left untreated, it can
spread to joints, the heart, and the nervous system. Lyme disease is diagnosed based on
symptoms, physical findings (e.g., rash), and the possibility of exposure to infected ticks.
Many people with early-stage Lyme disease develop circular rash at the site of the tick
bite, usually around to 30 days after being bitten. The untreated case of Lyme disease
can result in serious joint pain and or neurological problems and chronic Lyme disease
can become deteriorating causing a tremendous decease in quality of life. Therefore, this
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research intends to develop a mathematical model of Lyme disease to investigate the
transmission dynamics of the disease to control and reduce the spread of the disease.

Fig. 1. Lyme disease cases are reported to CDC,USA

Fig. 2. Lyme disease cases in Canada [2]

3 STATEMENT OF THE PROBLEM

Several mathematical models have been developed by many researchers on transmis-
sion dynamics of Lyme disease; [3], [4], [5] and [6] focused on ecological dynamics, climate
factors, host population and vector borne (ticks) population in their models.[3]consider
quarantine class in their model. In addition,[3], [7], and [5] explicitly consider seasonality
of ticks in their models. [3] indirectly addresses seasonality of ticks through the focusing
on temperature effects while [4] proposed a model which majorly targeted the devel-
opment cycle of ticks while [6] examine biotic effects and risk human disease utilizing
the ticks’ stage structure. In spite of their efforts and preventive measures against the
disease; it was discovered that their models could not capture public enlightenment which
is very important in tackling transmission of Lyme disease thus, this work proposed to
develop a model of Lyme disease incorporating public enlightenment and quarantine.

I.P. Kehinde and N.I. Aremu INTERMATHS, 5(2), 17–33, June 2024 | 19



4 AIM AND OBJECTIVES OF THE STUDY

This research aims at developing a mathematical model of Lyme disease and incorpo-
rating public enlightenment and quarantine. This will be achieved through the following
objectives to:

1. Develop a mathematical model for the impact of quarantine and public enlighten-
ment on Lyme disease.

2. Investigate the existence and uniqueness of the model.

3. Evaluate the effect of reproduction number (Ro) of the model.

4. Carry out stability analysis of the equilibrium states of the model.

5. Carry out a numerical simulation of the model.

5 SCOPE AND LIMITATION

This study focuses on using mathematical modeling to understand the spread of the
disease. The scope includes developing a model, analyzing initial conditions impact, and
evaluating intervention strategies. However, the model limitations arise from uncertain-
ties in real-world implementation. Factors such as variations in public compliance and
regional differences in disease dynamics could also pose challenges. The study is not
accountable for unforeseen variables or external factors influencing the effectiveness of
quarantine and awareness strategies.

6 SIGNIFICANCE OF THE STUDY

This study is significant as it explores strategies to control and understand the spread
of the disease. Mathematical models help simulate scenarios, offering insights into
how interventions like quarantine and public awareness can influence the transmission
dynamics, aiding in the development of effective disease management.

7 LITERATURE REVIEW

In a proposed time-delayed Lyme disease
model, [5] incorporate some climatic fac-
tors in which they obtain the existence of
a disease-free periodic solution, introduce
the basic reproduction ratio R0 and show
that under the same set of conditions, R0
serves as a threshold parameter in deter-
mining the global dynamics of the model;
that is, the disease-free periodic solution is
globally attractive if R0 < 1; the system is
uniformly persistent and admits a positive

periodic solution if R0 > 1. Numerically,
they studied the Lyme disease transmission
in Long Point, Ontario, Canada. Our sim-
ulation results indicate that Lyme disease
is endemic in this region if no further inter-
vention is taken. They find out that Lyme
disease will die out in this area if they de-
crease the recruitment rate of larvae, which
implies that the disease can be controlled
by preventing tick eggs from hatching into
larvae. The models developed revealed the
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dilution effects of the host population and
also in seasonal variations in temperature,
humidity, and resource availability have
a strong effect on tick population dynam-
ics. Climate impacts tick survival mostly
during nonparasitic periods of the life cy-
cle: outside certain ranges of temperature
and rainfall, tick populations cannot sur-
vive, because these conditions directly kill
the ticks or inhibit host-seeking activity.
Within these limits, temperature may also
determine development rates. For the eco-
logical dynamics governing the velocity of
the current epidemic’s spread of Lyme dis-
ease [6] present a reaction-diffusion model.
They find out that the equilibrium density
of infectious tick nymphs (hence the risk
of human disease) can depend on density-
independent survival interacting with bi-
otic effects on the tick’s stage structure.
The local risk of infection reaches a maxi-
mum at an intermediate level of adult tick
mortality and at an intermediate rate of
juvenile tick attacks on mammalian hosts.
If the juvenile tick attack rate is low, an
increase generates both a greater density
of infectious nymphs and an increased spa-
tial velocity. However, if the juvenile at-
tack rate is relatively high, nymph density
may decline while the epidemic’s velocity
still increases. Velocities of simulated two-
dimensional epidemics correlate with the
model pathogen’s basic reproductive num-
ber. To better understand various factors
determining the disease risk, which not only
enrich our understanding on the ecological
cycle of disease transmission [4] proposed
a growing body of theoretical models but
also promote new theoretical developments
on model formulation, analysis and sim-
ulation. we provide a review about the
models and results we have obtained re-
cently on modeling and analyzing Lyme
disease transmission, with the purpose to
highlight various aspects in the ecological

cycle of disease transmission to be incorpo-
rated, including the growth of ticks with
different stages in the life cycle, the season-
ality, host diversity, spatial disease pattern
due to host short distance movement and
bird migration, co-infection with other tick-
borne pathogens and climate change im-
pact. we identified and compared, 10 years
after the European inventory, the character-
istics of national surveillance systems and
policies for Lyme disease (LD) in humans,
with additional countries. The outcome of
the study has been used to produce predic-
tive and risk assessment tools for animal
health and public health outcomes. To in-
vestigate whether the model can be used
to identify limits for the potential north-
ward spread of Ixodes scapularis in North
America [8] developed a process-based dy-
namic population model of Ixodes scapu-
laris with the main purpose , that may be
imposed by effects of temperature on tick
survival. Their model incorporates intra-
annual, temperature-dependent variations
in the development rates of different tick
instars and is well validated by the season-
ality pattern of different tick instars. This
sort of model structure then has been used
in a number of mechanistic models of ticks
that aim to predict seasons of tick activity
and variations in tick abundance in differ-
ent locations. However, this structure is
mathematically intractable and calculation
of the effects of climate change-induced in-
creasing temperatures (or of other environ-
mental changes) on the basic reproduction
number R0 is not directly possible. In the
model develop for a transmission dynamics
model that includes the interactions be-
tween the primary vectors involved: black-
legged ticks (Ixodes. scapularis), white-
footed mice (Peromyscus leucopus), and
white-tailed deer (Odocoileus virginianus)
[3] model shows that the presence of multi-
ple vectors may have a significant impact
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on the dynamics and spread of Lyme dis-
ease. Based on our model, we also calcu-
late the basic reproduction number, R0 ,
a threshold value that predicts whether a
disease exists or dies out. Subsequent ex-
tensions of the model consider seasonality
of the tick’s feeding period and mobility of
deer between counties. Our results suggest
that a longer tick peak feeding period re-
sults in a higher infection prevalence. More-
over, while the deer mobility may not be
a primary factor for short-term emergence
of Lyme disease epidemics, in the long-run
it can significantly contribute to local in-
fectiousness in neighboring counties, which
eventually reach the endemic steady state.
A theoretical model by [9] they present that
illustrates how reductions in small-mammal
predators can sharply increase Lyme dis-
ease risk. We then show that increases
in Lyme disease in the northeastern and
midwestern United States over the past
three decades are frequently uncorrelated
with deer abundance and instead coincide
with a range-wide decline of a key small-
mammal predator, the red fox, likely due
to expansion of coyote populations. Fur-
ther, across four states we find poor spatial
correlation between deer abundance and
Lyme disease incidence, but coyote abun-
dance and fox rarity effectively predict the
spatial distribution of Lyme disease in New
York. These results suggest that changes
in predator communities may have cascad-
ing impacts that facilitate the emergence
of zoonotic diseases, the vast majority of
which rely on hosts that occupy low trophic

levels. A simple semi-discrete (ticks’ feed-
ing is assumed to occur only during the
summers of each year) model for tick popu-
lation dynamics [7] proposed the conditions
for existence, uniqueness, and stability of a
positive equilibrium are found; the system
is then studied numerically using parame-
ter estimates calibrated for the tick Ixodes
ricinus and the sensitivity parameters is
examined. Then, this model is extended
to consider a tick-transmitted infection of
one species of hosts, while other hosts are
incompetent to the infection. Assuming,
for simplicity, that the infection is not af-
fecting the total number either of hosts or
ticks, a threshold condition for infection
persistence is obtained. The dependence of
the equilibrium infection prevalence on pa-
rameters is studied numerically; in particu-
lar, we considered how infection prevalence
depends on host densities. This analysis
reveals that a ‘dilution effect’ occurs both
for competent and for incompetent hosts;
this means that, besides a lower threshold
for host densities for infection to persist,
there exists also an upper threshold: if host
densities were higher than the upper thresh-
old, the infection would go to extinction.
Numerically, it was found that, for realis-
tic parameter values, the upper threshold
is not much higher than observed densi-
ties. Based on these literature reviewed
and work of[3] and [8], we proposed math-
ematical modeling of the impact of quar-
antine and public enlightenment on the
transmission dynamics of Lyme disease.

8 METHODOLOGY

8.1 Model Formulation

The model considers two populations of humans and rodents. The human population is
subdivided into four compartments: Susceptible, Infected, Quarantined, and Recovered.
The rodent population is subdivided into two compartments: Susceptible and Infected.

The human population is recruited into the Susceptible compartment at a constant
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recruitment rate. The susceptible humans become infected and move to the infected
class by contacting the infected rodents or infected humans at the contact rates aΩ1
and Ω2 respectively. Infected humans move to the quarantine class at the rate τ ,
and the quarantined individuals move to the recovered class after treatment at the
recovery rate γh. Individuals leave the population either by the natural death rate µh or
by disease-induced death rate δh. The parameter β measures the effectiveness of the
enlightenment campaign, where 0 ≤ β ≤ 1, and θ is the effectiveness of quarantine and
treatment, where 0 ≤ θ ≤ 1. It is assumed that death due to disease is influenced by
the effectiveness of treatment; hence it is given by (1 − θ)δh.

The rodent population is recruited into the Susceptible compartment at a constant
recruitment rate Λr. The susceptible rodents become infected and move to the infected
class by contacting infected rodents at the contacting rate Ω3. The infected rodents
leave the population either by the natural death rate µr or by disease-induced death
rate. We also assume that since the wild rodents may not have access to treatment,
they do not recover from the disease.

The schematic diagram is represented in Figure 3.

Fig. 3. Schematic diagram of the model.

9 Model Formulation

The model for the dynamics of Lyme disease is given by the subsequent deterministic
system of linear differential equations. The model equations are derived as follows:
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dSh

dt
= Λh − (1 − β)

(
Ω1Ir

Nh

+ Ω2Ih

Nh

)
Sh − µhSh (9.1)

dIh

dt
= (1 − β)

(
Ω1Ir

Nh

+ Ω2Ih

Nh

)
Sh − (µh + δh + τ)Ih (9.2)

dQh

dt
= τIh − (µh + γh + (1 − θ)δh) Qh (9.3)

dRh

dt
= γhQh − µhRh (9.4)

dSr

dt
= Λr − Ω3IrSr

Nr

− µrSr (9.5)

dIr

dt
= Ω3IrSr

Nr

− (µr + δr)Ir. (9.6)

Where 0 ≤ β ≤ 1 and 0 ≤ θ ≤ 1.
The total populations are defined as:

Nh = Sh + Ih + Qh + Rh, Nr = Sr + Ir

N = Nh + Nr = Sh + Ih + Qh + Rh + Sr + Ir

So that the total population dynamics can be expressed as:

dN

dt
= Λ − µN − (δI + (1 − θ)ShQh)

dN

dt
= Λ − µN.

Table 1. Table of Variables and Parameters

NO Variables/Parameters
1. Λh - Constant recruitment rate of humans
2. Λr - Constant recruitment rate of rodents
3. Sh - Susceptible humans
4. Ih - Infected humans
5. Qh - Quarantined humans
6. Rh - Recovered humans
7. Sr - Susceptible rodents
8. Ir - Infected rodents
9. µh - Natural death rate of humans
10. µr - Natural death rate of rodents
11. β - Effectiveness of public enlightenment campaign
12. θ - Effectiveness of quarantine and treatment
13. Ω1 - Contact rate of rodents to humans
14. Ω2 - Contact rate of humans to humans
15. Ω3 - Contact rate of rodents to rodents
16. τ - Progression rate from infected to quarantine
17. δh - Disease-induced death rate of humans
18. δr - Disease-induced death rate of rodents
19. γh - Recovery rate of humans

24 | https://doi.org/10.22481/intermaths.v5i2.15503 I.P. Kehinde and N.I. Aremu

https://doi.org/10.22481/intermaths.v5i2.15503


10 Basic Properties of the Model Equations

10.1 Invariant Region

The population size can be determined by the linear differential equation of the model
formulated:

dN

dt
= dSh

dt
+ dIh

dt
+ dQh

dt
+ dRh

dt
+ dSr

dt
+ dIr

dt
(10.1)

i.e.

dN

dt
= Λ − µN − (δI + (1 − θ)ShQh) (10.2)

Such that

dN

dt
≤ Λ − µN (10.3)

Since N = Nh = Sh + Ih + Qh + Rh + Sr + Ir and equations (3.1.1) to (3.1.6) resolve
to a linear differential equation of the form:

dN

dt
+ µN ≤ Λ (10.4)

Theorem 10.1. The solution of the system of equations is feasible for t < 0 if they are
in the invariant region Ω.

Proof: Let (Sh, Ih, Qh, Rh, Sr, Ir) ∈ R6 be any solution of the system with non-
negative initial conditions using the integrating factor:

I.F. = e
∫

p dt = eµt+c = eµtec = Aeµt

Thus,

Aeµt dN

dt
=
∫

AeµtΛ dt

Integrating both sides gives: ∫
Aeµt dN =

∫
AeµtΛ dt

This leads to:

AeµtN = ΛAeµt

µ
+ c

Rearranging yields:

N = ΛAeµt

µeµt
+ c

µAeµt
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Thus,

N(t) = Λ
µ

+ ce−µt

At t = 0, the initial population becomes:

N(0) = Λ
µ

+ c

Where c is a constant. Simplifying, we have:

c = N0 − Λ
µ

Substituting gives:

N(t) = Λ
µ

+
(

N0 − Λ
µ

)
e−µt

By simplification, we obtain:

N(t) = Λ
µ

(
1 − e−µt

)
+ N0e

−µt

And therefore,

N(0) ≤ Λ
µ

As t → ∞ in the human population N approaches:

C = Λ
µ

i.e., N → C,

where C is the carrying capacity. Hence, all feasible solutions of the population model
system above enter the region Ω:

Ω = {(Sh, Ih, Qh, Rh, Sr, Ir) ∈ R6
+ : Sh + Ih + Qh + Rh + Sr + Ir ≥ 0 and N ≤ Λ

µ
}

Thus, it is a positively invariant set under the flow induced by the model, which is
epidemiologically well-posed in the domain. Furthermore, the usual existence, continuity,
and uniqueness results hold for the system.

11 Existence of Equilibria (E∗)
At any equilibrium state, the rate of change of each variable is equal to zero, i.e.,

dN

dt
= dSh

dt
= dIh

dt
= dQh

dt
= dRh

dt
= dSr

dt
= dIr

dt
(11.1)
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At any equilibrium state, let

(Sh, Ih, Qh, Rh, Sr, Ir) = (S∗
h, I∗

h, Q∗
h, R∗

h, S∗
r , I∗

r )

where:

A1 = (1 − β), A2 = (µh + δh + τ), A3 = (µh + δh + (1 − θ)γh), A4 = (µr + δr).

Thus, from equations (1) to (6), we have that at any arbitrary state:

Λh − (1 − β)
(

Ω1I
∗
r

Nh

+ Ω2I
∗
h

Nh

)
S∗

h − µhS∗
h = 0 (11.2)

(1 − β)
(

Ω1I
∗
r

Nh

+ Ω2I
∗
h

Nh

)
S∗

h − (µh + δh + τ)I∗
h = 0 (11.3)

τI∗
h − (µh + γh + (1 − θ)δh)Q∗

h = 0 (11.4)

dRhdt = γhQh − µhRhγhQ∗
h − µhR∗

h = 0 (11.5)

Λr − Ω3I
∗
r S∗

r

Nr

− µrS
∗
r = 0 (3.3.7)

Ω3I
∗
r S∗

r

Nr

− (µr + δr)I∗
r = 0 (11.6)

Hence, we conclude that I∗
h = I∗

r = 0.

12 Disease-Free Equilibrium (E0)
At disease-free equilibrium, there is an absence of disease. Thus, the disease-free

equilibrium E0 for the model is given as:

I∗
h = Q∗

h = R∗
h = 0

By solving the model equations using the idea of [11], we have:
Let

(S∗
h, I∗

h, Q∗
h, R∗

h, S∗
r , I∗

r ) = (S0
h, I0

h, Q0
h, R0

h, S0
r , I0

r ) = E0

Thus,

E0 = (S0
h, I0

h, Q0
h, R0

h, S0
r , I0

r ) =
(

Λ
µ

, 0, 0, 0,
Λ
µ

, 0
)

At disease-free equilibrium, we have:

N0
h = Λh

µh

and N0
r = Λr

µr
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12.1 Basic Reproduction Number R0

The basic reproduction number R0 is a crucial concept in epidemiology that quantifies
the average number of secondary infections produced by a single infected individual in
a population where everyone is susceptible. It is a key parameter in infectious disease
modeling and is used to assess the potential for an outbreak to become an epidemic.

Using the next generation matrix approach as described in [10] and [11], the basic
reproduction number is defined as the highest eigenvalue of the matrix FV −1, where F
represents the transmission terms and V represents the transition terms in the model.

The matrices F and V are defined as follows:

F =
[
A1Ω2 A1Ω1

0 Ω4

]
, V =

[
A2 0
0 A4

]
, V −1 =

[ 1
A2

0
0 1

A4

]

Calculating FV −1:

FV −1 =
[

A1Ω2
A2

A1Ω1
A4

0 Ω3
A4

]

There exist two reproduction numbers since the transformation is between rodents
and humans. Hence,

R0h = A1Ω2

A2

which is the basic reproduction number from humans to humans, and

R0r = Ω3

A4

which is the basic reproduction number from rodents to rodents.

12.2 Local Stability of Disease-Free Equilibrium

The linear stability can be established using the next generation operator method on
the system developed by [12]. Using the notation by [13] , the matrices F and V , for
the new infection and the remaining transmission terms, are respectively given by the
disease-free equilibrium of the model system . The equilibrium is locally asymptotically
stable if R0h < 1 or R0r < 1.

Proof using Jacobian stability techniques, as in [14]. The Jacobian matrix is given as:

J(E0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µh −A1Ω2 0 0 0 −A1Ω2
0 −A1Ω2 − A1 0 0 0 −A1Ω1
0 τ −A2 0 0 0
0 0 Υh −Υh 0 0
0 0 0 0 −µr −Ω2
0 0 0 0 0 A1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

28 | https://doi.org/10.22481/intermaths.v5i2.15503 I.P. Kehinde and N.I. Aremu

https://doi.org/10.22481/intermaths.v5i2.15503


12.3 Jacobian Matrix and Stability Analysis

Reducing to an upper triangular matrix gives:

J(E0) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µh −A1Ω1 0 0 0 −A1Ω1
0 A1Ω2 0 0 0 A1Ω1
0 0 −A3 0 0 −A1Ω1τ

A1Ω2−A2

0 0 0 −µh 0 −A1Ω1Υhτ
A3(A1Ω2−A2)

0 0 0 0 −µr −Ω3
0 0 0 0 0 Ω3 − A4

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
The characteristic equation is given by:

|J(E0) − λI| = 0

|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−µh − λ −A1Ω1 0 0 0 −A1Ω1
0 A1Ω2 − A2 − λ 0 0 0 A1Ω1
0 0 −A3 − λ 0 0 −A1Ω1τ

A1Ω2−A2

0 0 0 −µh − λ 0 −A1Ω1Υhτ
A3(A1Ω2−A2)

0 0 0 0 −µr − λ −Ω3
0 0 0 0 0 Ω3 − A4 − λ

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
| = 0

The characteristic equation is given as:

(µh − λ)(A1Ω2 − A2 − λ)(−A3 − λ)(−µr − λ)(−µh − λ)(Ω3 − A4 − λ) = 0

The eigenvalues are:

λ1 = −µ, λ2 = A1Ω2 − A2, λ3 = −A3, λ4 = −µh, λ5 = −µr, λ6 = Ω3 − A4

It is observed from the equations that all the eigenvalues λ are less than zero except
λ2 and λ6.

For λ2 < 0:

A1Ω2 − A2 < 0 =⇒ A1Ω2

A2
< 1

This implies:

R0h < 1

For λ6 < 0:

Ω3 − A4 < 0 =⇒ Ω3

A4
< 1
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This implies:

R0r < 1

Hence, the disease-free equilibrium (DEF) is locally asymptotically stable. This proves
that the disease will not persist in the population.

13 Sensitivity analysis and Numerical Simulation

Sensitivity analysis is a crucial analysis that shows the importance of each parameter
to Lyme disease transmission. A graphical simulation was formulated using maple
software showing the effectiveness of the enlightenment Campaign β which predicts the
reproduction number R0 of the disease.

Parameter Value Parameter Value

Ah 0.029 µh 1.5
Ar 0.2 δh 0.2
Ω1 0.00025Yh 0.83
Ω2 0.00006τ 0.52
Ω3 0.027 β 0.005
µr 0.002 θ 0.005
δr 0.5 Nh 164700000

Nr 150000000

Fig. 4. Parameters and Values Fig. 5. Schematic diagram of the model.

Figure 4 & 5 shows simulation of basic reproduction number of humans against public
enlightenment campaign at lower effective rate. The graph illustrates the relationship
between the basic reproduction number of humans, denoted as R0h, and the public
enlightenment campaign, represented by β, at a contact rate Ω2. It shows that as
the effectiveness of the enlightenment campaign β increases, the basic reproduction
number R0h decreases. Conversely, it was observed that the lower the effectiveness of
the campaign, the higher the reproduction number R0.

The figure 6 & 7 illustrates the relationship between the basic reproduction number
of humans, denoted as R0h, and the public enlightenment campaign, represented by β,
at a contact rate Ω2. It shows that as the effectiveness of the enlightenment campaign β
increases, the basic reproduction number R0h decreases. This indicates that a higher
effectiveness of the campaign correlates with a lower reproduction number.
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Parameter Value Parameter Value

Ah 0.029 µh 1.5
Ar 0.2 δh 0.2
Ω1 0.00025Yh 0.83
Ω2 0.00006τ 0.52
Ω3 0.027 β 2.6
µr 0.002 θ 2.4
δr 0.5 Nh 164700000

Nr 150000000

Fig. 6. Parameters and Values Fig. 7. Schematic diagram of the model.

Parameter Value Parameter Value

Ah 0.029 µh 1.5
Ar 0.2 δh 0.2
Ω1 0.00025Yh 0.83
Ω2 0.00006τ 0.52
Ω3 0.027 β 0.5
µr 0.002 θ 0.5
δr 0.5 Nh 164700000

Nr 150000000

Fig. 8. Parameters and Values Fig. 9. Schematic diagram of the model.

Figure 8 & 9 illustrates the simulation of the basic reproduction number of humans,
denoted as R0h, in relation to the public enlightenment campaign, represented by β, at a
contact rate Ω2. The graph demonstrates that as the effectiveness of the enlightenment
campaign β increases, the basic reproduction number R0h decreases. This trend indicates
that a more effective campaign correlates with a lower reproduction number.

Furthermore, the results reveal that a higher public enlightenment campaign, coupled
with an increased progression rate from infected individuals to quarantine, leads to a
further reduction in the basic reproduction number. This finding implies that public
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enlightenment campaigns, along with the isolation of infected individuals from susceptible
populations, are crucial strategies in mitigating the spread of Lyme disease within the
affected population.

14 Conclusion

The Lyme disease transmission dynamics model incorporating quarantine class and
public enlightenment campaign parameter to control the spread of the disease was
developed using first order ordinary differential equations. Two equilibrium states
exist in the model; Disease Free Equilibrium (DFE) and Endemic Equilibrium (EE).
There are also two reproduction numbers in the model; rodent to human transmission
reproduction number and human to human reproduction number. The local and global
stability of DFE is stable which implies that the disease will not persist in the population.
furthermore, the graphical simulation of basic reproduction number and some parameters
of the model are show in order to understand the effect of these parameters in the
spread and control of Lyme. Hence the result can further be extended by incorporating
additional variables and parameters. [9],[14–16].
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