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Abstract: In this paper, we present a new sequence of Horadam-type, which we call the
One-Zero sequence. We study the recurrence equation and show the Binet formula. The aim
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1 Introduction

For a non-negative integer n, consider the Horadam sequence {hn}n≥0 defined by the second-order
recurrence relation, where p and q are fixed integers:

hn+1 = phn + qhn−1 for all n ≥ 1, (1.1)

with initial terms h0 = a and h1 = b. This sequence was introduced by Horadam [1, 2], generalizes
many sequences defined by a recurrence relation of the form x2 − px − q = 0. For more comprehensive
results on the Horadam sequence, see [2, 3].

The sequence One-Zero consists of natural numbers that are represented in the decimal system
only by the digits 1 (unit-one) and 0 (zero) alternately starting and ending with 1, represented by
the set {Un}n≥1 = {1, 101, 10101, . . . , }, the id-number A094028 in OEIS [4]. Let us begin with the
elementary observation that the sequence {Un}n≥1 satisfies the non-homogeneous linear recurrence:

Un+1 = 100Un + 1, with U1 = 1 and n ≥ 1 . (1.2)

An alternative way to express the equation (1.2) is

Un = 100Un−1 + 1 . (1.3)

By subtracting the equations (1.2) and (1.3) we get a homogeneous recurrence relation,

Un+1 = 101Un − 100Un−1 , with U0 = 0 and U1 = 1, for all n ≥ 1 , (1.4)

where Un represents the n-th One-Zero numbers, for convenience, we will use U0 = 0.
In Equation (1.1), if we assume the values of p = 101, q = −100, a = 0, and b = 1, then the

Horadam sequence is specified in the One-Zero sequence. It can be observed that the One-Zero
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numbers, represented by the sequence {Un}n≥0, satisfy the Horadam recursive recurrence, as defined
by Equation (1.4).

These numbers are referred to as smoothly undulating, and various arithmetic properties involving
divisibility, primality, and the existence of perfect squares are discussed in [5–10], among other sources.

In this section we present the definition of the One-Zero sequence and identify it as a Horadam-type
sequence. The structure of this paper is organized into four additional sections, outlined as follows. In
Section 2, we establish recurrence relations and a Binet’s formula for the sequence One-Zero, showing
an expression for understanding and efficiently calculating its terms for any integer n. As well as
determining the generating functions for this sequence. In Section 3, using Binet’s formula, we establish
some identities for the One-Zero sequence for all integers n. This is the first work to determine and
display identities for this sequence. Finally, summation formulas involving the One-Zero numbers are
presented in Section 4. We conclude with some final considerations and state some future work on this
topic.

2 One-Zero numbers and the Binet formula

In this section, we derive the recurrence relation and formulate the Binet expression for the One-Zero
sequence, applicable to all integers n. This provides a comprehensive framework for understanding and
systematically calculating terms in the sequence.

See that the difference equation associated with the One-Zero sequence {Un}n≥0 is

Un = 101Un−1 − 100Un−2, for all n ≥ 2, with U0 = 0 and U1 = 1 ; (2.1)

which has as its Horadam-type characteristic equation x2 − 101x + 100 = 0, and its real roots are
x1 = 100 and x2 = 1. Following [11, 12], if the equation x2 − px + q = 0 has distinct roots x1 and x2,
then, for n ≥ 0, the expression

xn = c1(x1)n + c2(x2)n , (2.2)
with c1, c2 real numbers are solutions of Equation (2.1). Let us determine the constants c1 and c2.
With the initial terms U0 = 0 and U1 = 1, we obtain the following linear system:{

0 = c1 + c2

1 = 100c1 + c2 .

We find that c1 = 1
99 and c2 = − 1

99 . Substituting these values into Equation (2.2) yields:

Un = 102n − 1
99 , for all n ≥ 0.

This verifies the following result:

Proposition 2.1. For all n ≥ 0 integer numbers, we have

Un = 102n − 1
99 , (2.3)

where {Un}n≥0 is the One-Zero sequence.

The proposition above, Equation (2.3), represents the classic Binet formula for the One-Zero sequence
{Un}n≥0.

In order to extend the One-Zero sequence to incorporate negative subscripts, it is necessary to set
n = 1 in the Equation (2.1), as follows:

U1 = 101U0 − 100U−1

1 = 0 − 100U−1;

or equivalent,

U−1 = − 1
100 = − U1

100 ;
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in the same way, let’s make n = 0,

U0 = 101U−1 − 100U−2

0 = −101
100 − 100O−2 ;

or equivalent,

U−2 = − 101
1002 = − U2

1002 .

Having stated it, let’s define the negative index terms of this sequence.

Definition 2.2. For any integer n ≥ 0, the One-Zero sequence for negative indexes is defined as
follows:

U−n = − Un

102n
. (2.4)

This definition makes sense because by making n = −k in Equation (2.3), we get

U−k = 10−2k − 1
99 = −102k − 1

99 · 102k
.

The Binet formula above for the One-Zero sequence {U−n}n≥0 with negative subscripts, is a direct
consequence from Equations (2.3) and (2.4).

Proposition 2.3. For all integer numbers n ≥ 0, we have

U−n = −102n − 1
99 · 102n

, (2.5)

where {Un}n≥0 is the One-Zero sequence.

According to definition, a One-Zero sequence with negative index is constituted by the set of elements
given by

{U−n}n≥1 =
{

− 1
102 , −101

104 , −10101
106 , −1010101

108 , . . . ,

}
.

We can rewrite the recurrence relation Equation (2.1) for all n integer, the One-Zero sequence
{Un}n∈Z satisfies:

Un = 101Un−1 − 100Un−2, for all n ≥ 2, with U0 = 0 and U1 = 1 .

Again, the One-Zero sequence {U−n}n≥0 with negative subscripts satisfies:

Proposition 2.4. For all n > 0, the following recurrence holds

U−(n+1) =
101U−n − U−(n−1)

102 , (2.6)

where {Un}n∈Z is the One-Zero sequence.

Proof. Note that

101U−n − U−(n−1)

= 101 ·
(

− Un

102n

)
−
(

− Un−1

102(n−1)

)
= −101Un − 100Un−1

102n
= −Un+1

102n
;

as required.
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Taking into account the literature, for example in [11, 12], the function

f(x) =
∞∑

n=0
anxn = a0 + a1x + a2x2 + a3x3 + . . . + anxn + . . . (2.7)

is known as the ordinary generating function for the sequence {a0, a1, a2, . . .}.
Our next result presents the ordinary generating function for One-Zero sequence.

Proposition 2.5. The ordinary generating function for the One-Zero sequence {Un}n≥0, denoted by
GUn

(x), is:
GUn(x)(x) = x

1 − 101x + 100x2 .

Proof. According to Equation (2.7), the generating function for the One-Zero sequence is GUn
(x) =

∞∑
n=0

Unxn, then using the equations −101xGUn
and 100x2GUn

, we obtain

GUn
(x) =U0 + U1x + U2x2 + . . . + Unxn + . . .

−101xGUn
(x) = − 101U0x − 101U1x2 − 101U2x3 − . . . − 101Unxn+1 − . . .

100x2GUn(x) =100U0x2 + 100U1x3 + 100U2x4 + . . . + 100Unxn+2 − . . .

When we add to both sides of these equations, we have

(1 − 101x + 100x2)GUn(x)
= U0 + (U1 − 101U0)x + (U2 − 101U−1 + 100U0)x2 +

+(U3 − 101U2 + 100U1)x3 + . . . + (Un − 101Un−1 + 100Un−2)xn . . . .

Making use of Equation (2.1), we conclude that

(1 − 101x + 100x2)GUn(x) = U0 + (U1 − 101U0)x ,

since U0 = 0, U1 = 1 and (1 − 101x + 100x2) ̸= 0, we have the result.

Now, we express the ordinary generating function for One-Zero sequence with negative subscripts.

Proposition 2.6. The ordinary generating function for the One-Zero sequence {U−n}n≥0 with negative
subscripts, denoted by GU−n

(x), is:

GU−n
(x)(x) = 100 x

100 − 101x + x2 .

Proof. By Equation (2.7), the ordinary generating function for the One-Zero sequence is GU−n
(x) =

∞∑
n=0

U−nxn, then using the equations −101
102 xGU−n and 1

102 x2GU−n , we obtain

GU−n
(x) =U0 + U−1x + U−2x2 + . . . + U−nxn + . . .

−101
102 xGU−n

(x) =−101
102 U0x

−101
102 U−1x2 −101

102 U−2x3 − . . .
−101
102 U−nxn+1 − . . .

1
102 x2GU−n

(x) = 1
102 U0x2 + 1

102 U−1x3 + 1
102 U−2x4 + . . . + 1

102 U−nxn+2 − . . .

When we add to both sides of these equations, we have

(1 − 101
102 x + 1

102 x2)GUn
(x)

= U0 + (U1 − 101
102 U0)x + (U2 − 101

102 U−1 + 1
102 U0)x2 +

+(U3 − 101
102 U2 + 1

102 U1)x3 + . . . + (Un − 101
102 Un−1 + 1

102 Un−2)xn . . . .
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Making use of Equation (2.6), we conclude that(
1 − 101

102 x + 1
102 x2

)
GUn

(x) = U0 + (U1 − 101
102 U0)x .

Since U0 = 0, U1 = 1 we have
100 − 101x + x2

102 GUn
(x) = 1x ,

with (1 − 101x + 100x2) ̸= 0, and we have the result.

In accordance with the established literature, see [12], the exponential generating function, designated
as Ean

(x) of a sequence {an}n≥0 is a power series of the form

Ean
= a0 + a1x + a2x2

2! + ... + anxn

n! + . . . =
∞∑

n=0

anxn

n! .

In the next result we consider the Binet Equation (2.3), and obtain the exponential generating
function for the One-Zero sequence {Un}n≥0.

Proposition 2.7. For all n ≥ 0 the exponential generating function for the One-Zero sequence {Un}n≥0
is

EUn(x) = 1
99
(
e100x − ex

)
.

Proof. The exponential generating function for the One-Zero numbers is
∞∑

n=0

Untn

n! . Using Equation (2.3),

we obtain that
∞∑

n=0

Unxn

n! =
∞∑

n=0

102n − 1
99 · xn

n!

= 1
99

( ∞∑
n=0

(100x)n

n! −
∞∑

n=0

xn

n!

)

= 1
99
(
e100x − ex

)
,

as required.

The Poisson generating function Pan
(x) for a sequence {an}n≥0 is given by:

Pan
(x) =

∞∑
n=0

an
xn

n! e−x = e−xEan
(x) .

Consequently, the corresponding Poisson generating function is derived.

Corollary 2.8. For all n ≥ 0 the Poisson generating function for the One-Zero sequence {Un}n≥0 is

PUn(x) = 1
99(e99x − 1) .

In a similar manner, we express the exponential generating function and Poisson generating function
for One-Zero sequence with negative subscripts.

Proposition 2.9. The exponential generating function for the One-Zero sequence {U−n}n≥0 with
negative subscripts, denoted by EU−n(x), is:

EU−n
(x)(x) = − 1

99(ex − e
x

100 ) .
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Proof. Similarly, we will treat the negatives in an analogous manner.
∞∑

n=0

U−nxn

n! =
∞∑

n=0
−102n − 1

99 · 102n
· xn

n!

= − 1
99

( ∞∑
n=0

100n · xn

100n · n! −
∞∑

n=0

xn

n! · 100n

)

= − 1
99

( ∞∑
n=0

xn

n! −
∞∑

n=0

1
100n xn

n!

)

= − 1
99(ex − e

x
100 ) ,

which verifies the result.

Corollary 2.10. For all n ≥ 0 the Poisson generating function for the One-Zero sequence {U−n}n≥0
with negative subscripts, is

PU−n
(x) = − 1

99(1 − e
−99x

100 ) .

3 Some identities for One-Zero sequence

In this section, we establish some classical identities for the One-Zero sequence for all integers n, for
example, the Tagiuri-Vajda, Catalan, Cassini, d’Ocganes and Gelin-Cesàro identities.

The first result establishes the addition formula for two terms of the One-Zero sequence.
Proposition 3.1. For all non-negative integers m, n , we get

UmUn+1 − 102Um−1Un = 99Um+n .

where {Un}n≥0 is the One-Zero sequence.

Proof. According to Binet’s Equation (2.3), we have

UmUn+1 − 102Um−1Un

=
(

102m − 1
99

)(
102(n+1) − 1

99

)
− 102

(
102(m−1) − 1

99

)(
102n − 1

99

)
=

102(n+m+1) − 102m − 102(n+1) − 102 (102(n+m−1) − 102(m−1) − 102n + 1
)

99

= 102(n+m+1) − 102(n+m) − 102 + 1
99

= (102(m+n) − 1)(102 − 1)
99 = 99Um+n ,

as required.

In consequence of Proposition 3.1, the following result is established.
Corollary 3.2. For all non-negative integers k and let {Uk}k≥0 be the One-Zero sequence. Then the
following identities hold:

(a) 99U2k+1 = U2
k+1 − 102U2

k ;

(b) 99U2k = 101U2
k − 2 · 102UkUk−1.

Proof. (a) As 2k + 1 = (k + 1) + k, for all non-negative integer k. In Proposition 3.1 make m = k + 1
and n = k, so it follows that

99U2k+1 = 99U(k+1)+k

= Uk+1Uk+1 − 102UkUk

= U2
k+1 − 102U2

k .
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(b) In Proposition 3.1 make m = k and n = k, so it follows that

99U2k = UkUk+1 − 102Uk−1Uk

= Uk(Uk+1 − 102Uk−1) .

According to recurrence Equations (2.1), we have Uk+1 = 101Uk − 102Uk−1. Then:

99U2k = Uk(101Uk − 100Uk−1 − 102Uk−1)
= 101U2

k − 2 · 102UkUk−1 ,

which verifies the result.

The following result establishes a linear combination formula for the sum of two terms. The proof of
this result and the subsequent four results will not be presented in order to avoid any potential tedium
for the reader. The proof is analogous to that of Proposition 3.1.

Proposition 3.3. For all non-negative integers m, n , we get

UmUn+1 − 104Um−1Un + 1 = Um + Un+1 ,

where {Un}n≥0 is the One-Zero sequence.
The following result shows the relationship between the double order term and the quadratic order

term.

Proposition 3.4. Let n be any non-negative integer. We have

U2n − 2Un = 99U2
n ,

where {Un}n≥0 is the One-Zero numbers.

The convolution identity is shown below, except for one constant.

Proposition 3.5. For all non-negative integers m, n , we get

992(Um−1Un + UmUn+1) = 1001 · 102(m+n−1) − 101(102m−1 + 102n) + 2 ,

where {Un}n≥0 is the One-Zero sequence.

Now let us make a result that will help us further.

Proposition 3.6. For all integer non-negative n and k, with n ≥ k, we have

99 · Un−kUn+k = U2n − (Un−k + Un+k) , (3.1)

where {Un}n≥0 is the One-Zero sequence.

The following result shows a difference between two products; this result will be used later.

Proposition 3.7. Let m be any natural number. We have

Um+3Um+4 − Um+1Um+6 = (104 + 1)102(m+1) · U3 ,

where {Un}n≥0 is the One-Zero sequence.

The Tagiuri-Vajda identity for the sequence One-Zero is given below.

Theorem 3.8. Let n, k, r be any natural numbers. We have

Un+kUn+r − UnUn+k+r = 102nUrUk ,

where {Un}n≥0 is the One-Zero sequence.
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Proof. Using Equation (2.3) again we obtain that

Un+kUn+r − UnUn+k+r

=
(

102(n+k) − 1
99

)(
102(n+r) − 1

99

)
−
(

102n − 1
99

)(
102(n+k+r) − 1

99

)
= 102(2n+k+r) − 102(n+k) − 102(n+r) + 1

992 − 104n+2k+2r − 102n − 102(n+k+r) + 1
992

= 102(n+k+r) − 102(n+k) − 102(n+r) + 102n

992

= 102(n+k)(102r − 1) − 102n(102r − 1)
992

= (102r − 1)(102(n+k) − 102n)
992

= 102n(102r − 1)(102k − 1)
992 ,

and we have the validity of the result.

The following identities will be derived as a consequence of the Tagiuri-Vajda Identity, as demonstrated
in Theorem 3.8. The subsequent results will present the detailed derivation.

Corollary 3.9. (d’Ocagne’s Identity) Let m, n be any natural. For m ≥ n we have

UmUn+1 − Um+1Un = 102nUm−n ,

where {Un}n≥0 is the One-Zero sequence.

Proof. First, we consider k = m − n and r = 1 in Theorem 3.8, so

UmUn+1 − UnUm+1 = 102nU1Um−n .

Since U1 = 1,and we get the result.

Similar to Corollary 3.9 we have the Catalan Identity.

Corollary 3.10. [Catalan’s Identity] Let n, k be any natural. For n ≥ k we have

(Un)2 − Un−kUn+k = 102(n−k) · U2
k , (3.2)

where {Un}n≥0 is the One-Zero sequence.

Proof. Just take r = −k in Theorem 3.8 we have

Un+kUn−k − (Un)2 = 102nUk · U−k ,

By Equation (2.4), we have

Un+kUn−k − (Un)2 = −102nUk · Uk

102k
,

and we get the result.

A consequence of Corollary 3.10 is the following identity.

Corollary 3.11. Let n be any natural number. For n ≥ k we have

(Un)2 − Un−2Un+2 = 10201 · 102(n−2) , (3.3)

where {Un}n≥0 is the One-Zero sequence.
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Proof. To obtain the desired result, simply substitute k = 2 into Equation (3.2). Given that U2 = 101,
the result is anticipated.

Cassini’s identity also follows directly from the Corollary 3.10.

Corollary 3.12. (Cassini’s Identity) For all n ≥ 1, we have

(Un)2 − Un−1Un+1 = 102(n−1) , (3.4)

where {Un}n≥0 is the One-Zero sequence.

Proof. Just make k = 1 in the Equation (3.2).

By substituting n = 2m in Corollary 3.12, we conclude:

Corollary 3.13. For all m ≥ 1, we have

(U2m)2 − U2m−1U2m+1 = 102(2m−1) ,

where {Um}m≥0 is the One-Zero sequence.

Now, we present the Gelin-Cesàro identity for the One-Zero sequence.

Proposition 3.14. Let n be any natural number. Then the identity holds

(Un)4 − Un−2Un−1Un+1Un+2

= 10201
(

102(2n−3) + Un−2 [U2n − (Un−1 + Un+1)] + Un−1 [U2n − (Un−2 + Un+2)]
)

,

where {Un}n≥0 is the One-Zero sequence.

Proof. According to Equation (3.3), we have

(Un)2 = Un−2Un+2 + 10201 · 102(n−2) , (3.5)

By Equation (3.4)
(Un)2 = Un−1Un+1 + 102(n−1) , (3.6)

Multiplying both sides of the Equations (3.5) and (3.6), we get

(Un)4 = Un−2Un−1Un+1Un+2 + 10201 · 102(n−2)Un−1Un+1

+102(n−1)Un−2Un+2 + 10201 · 102(2n−3) ,

or equivalent,

(Un)4 − Un−2Un−1Un+1Un+2

= 10201 · 102(2n−3) + 10201 · Un−2 [U2n − (Un−1 + Un+1)] + Un−1 [U2n − (Un−2 + Un+2)] ,

this completes the proof.

Finally, we present an interesting result that investigates combinations of certain terms within the
One-Zero sequence. This result shares notable parallels with the Tagiuri-Vajda, Catalan, Cassini, and
d’Ocagne identities discussed earlier.

Proposition 3.15. Let m be any natural. We have

(Um+3)3 − Um+1Um+2Um+6 = 102(m+1)[102Um+3 + (104 + 1)U3Um+2] ,

where {Un}n≥0 is the One-Zero sequence.
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Proof. By Cassini’s Identity, Corollary 3.12, we have (Um+3)2 − Um+2Um+4 = 102(m+2). So (Um+3)3 −
Um+2Um+3Um+4 = 102(m+2)Um+3. According to Proposition 3.7, we get

(Um+3)3 − Um+2Um+3Um+4 = 102(m+2)Um+3

(Um+3)3 − Um+2(Um+1Um+6 + (104 + 1)102(m+1) · U3) = 102(m+2)Um+3 ,

or equivalently

(Um+3)3 − Um+1Um+2Um+6

= 102(m+2)Um+3 + (104 + 1)102(m+1)U3Um+2

= 102(m+1)[102Um+3 + (104 + 1)U3Um+2] ,

the end of the proof.

To finish this section, the following result presents another interesting application of Cassini’s Identity,
as shown below.

Proposition 3.16. For any positive integer m, the Diophantine equation x2 −101xy+100y2 = 102(m−1)

has infinitely many solutions.

Proof. By combining Equation (3.2) with Equation (2.1), we obtain the following equation: (Um)2 −
101Um−1Um + 100(Um−1)2 = 102(m−1). Setting Um = x and Um−1 = y yields the desired result, where
{Un}n≥0 is the One-Zero sequence.

4 Some Sum formulas

In this section, we present results on partial sums of the terms of the One-Zero sequence with n
integers. Initially, consider the sequence of partial sums

∑n
k=0 Uk = U0 + U1 + U2 + · · · + Un, for n ≥ 0,

where {Un}n≥0 is the One-Zero sequence.
We will present two results involving the partial sum of the terms of the One-Zero sequence.

Proposition 4.1. Let {Un}n≥1 be the One-Zero sequence and n the non-negative integer, then:

(a)
∑n

k=0 Uk = Un+2 − (n + 1)
99 ,

(b)
∑n

k=0 U2k = Un+1[102(n+1) + 1]
999 − (n + 1)

99 ,

(c)
∑n

k=0 U2k+1 = 102Un+1(102(n+1) + 1)
999 − (n + 1)

99 .

Proof. (a) By Equation (2.3) we have,

n∑
k=0

Uk = U0 + U1 + U2 + · · · + Un

= 100 − 1
99 + 102 − 1

99 + 104 − 1
99 + · · · + 102n − 1

99

= 100 + 102 + · · · + 102n − (1 + 1 · · · + 1)
99

=
100

(
102(n+1)−1

102−1

)
− (n + 1)

99

= Un+2 − (n + 1)
99 ,

as required.
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(b) Note that, Equation (2.3) once more, we get

2n∑
k=0

Uk = U0 + U2 + U4 + · · · + U2n

= 100 − 1
99 + 104 − 1

99 + 108 − 1
99 + · · · + 104n − 1

99

= 100 + 104 + · · · + 104n − (1 + 1 · · · + 1)
99

=

(
104(n+1)−1

104−1

)
− (n + 1)

99 =
[102(n+1)−1][102(n+1)+1]

104−1 − (n + 1)
99

= [102(n+1) − 1][102(n+1) + 1] − 999(n + 1)
99 · 999 ,

as required.
(c) Similarly, we have

n∑
k=0

U2k+1 = U1 + U3 + · · · + U2n+1

= 102 − 1
99 + 106 − 1

99 + · · · + 102(2n+1)

99

= 102 + 106 + · · · + 102(2n+1) − (n + 1)
99

=
102

(
104(n+1)−1

104−1

)
− (n + 1)

99

= 102 (102(n+1) − 1)(102(n+1) + 1) − 999(n + 1)
99 · 999

this completes the proving.

Consider now the sequence of alternating partial sums given by
n∑

k=0
(−1)kUk = U0 − U1 + U2 − U3 + · · · + (−1)nUn

for n ≥ 0, where {Un}n≥0 denotes the One-Zero sequence.

Proposition 4.2. Let {Un}n≥0 be the One-Zero sequence, and n be a non-negative integer. Then:

(a)
n∑

k=0
(−1)kUk = − 11Un+1[102(n+1)+1]

111 , if n is odd ;

(b)
n∑

k=0
(−1)kUk = Un+2[102(n+2)+1]−102Un+1(102(n+1)+1)

999 − 1
99 , if n is even .

Proof. (a) First, suppose that n is the odd natural number, or equivalently, the last term is negative,
thus

2n+1∑
k=0

(−1)kUk = U0 − U1 + U2 − U3 + · · · + U2n − U2n+1

= (U0 + U2 + · · · + U2n) − (U1 + U3 + · · · + U2n+1)

=
n∑

k=0
U2k −

n∑
k=0

U2k+1
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According to the Proposition 4.1, items (b) and (c), it follows that
2n+1∑
k=0

(−1)kUk =
n∑

k=0
U2k −

n∑
k=0

U2k+1

= Un+1[102(n+1) + 1]
999 − (n + 1)

99 −
(

102Un+1(102(n+1) + 1)
999 − (n + 1)

99

)
= Un+1[102(n+1) + 1](1 − 102)

999 .

(b) In this case, we consider n even natural number, so

2(n+1)∑
k=0

(−1)kUk = U0 − U1 + U2 − U3 + · · · + U2n − U2n+1 + U2(n+1)

= (U0 + U2 + · · · + U2n + U2(n+1)) − (U1 + U3 + · · · + U2n+1)

=
n+1∑
k=0

U2k −
n∑

k=0
U2k+1 .

As in item (a), apply the Proposition 4.1.

5 Final Considerations

In the present study, we discussed the properties of the sequence One-Zero with integer indexes,
which is a sequence of the type Horadam {hn}n≥0. Our aim was to determine some identities for this
specific sequence, in particular the classical identities such as Tagiuri-Vajda, D’Ocagene, Catalan and
Cassini. By highlighting these results, we wish to inspire further research into this class of numbers. In
addition, some aspects of these investigations appear to be pioneering, suggesting that although the
results are obtained using elementary mathematical methods, they may offer original perspectives that
potentially enrich the understanding of this domain. In future works we will extend and generalize this
sequence to the domain of complex numbers, quaternions, octonions and hybrid numbers. Finally, we
observed the similarity of the One-Zero sequence with the repunit sequence, not only because they
are both type-Horadam sequences, as can be seen in the papers [13–15], something we should also
investigate in future work.

Acknowledgments: The first author was partially supported by PROPESQ-UFT. The third author is
member of the Research Centre CMAT-UTAD (Polo of Research Centre CMAT - Centre of Mathematics
of University of Minho) and she thanks the Portuguese Funds through FCT – Fundação para a Ciência e a
Tecnologia, within the Projects UIDB/00013/2020 and UIDP/00013/2020.

Conflict of interest statement: The authors declare no conflict of interest in the writing of the manuscript,
or in the decision to publish the results.

References

1. A. F. Horadam. “A generalized Fibonacci sequence." The American Mathematical Monthly,
v. 68, n. 5, p. 455–459, 1961.

2. A. F. Horadam. “Basic properties of a certain generalized sequence of numbers”, The
Fibonacci Quart., v. 3, n. 3, p. 161–176, 1965.

3. D. Kalman; R. Mena. “The Fibonacci numbers-exposed”, Mathematics magazine, 76(3),
167–181, 2003.

4. N. J. A. Sloane. The on-line encyclopedia of integer sequences. Sequence A002275. [S. l.]:
The OEIS Foundation Inc., 2024. Disponível em: <http://oeis.org/A094028>.

5. C. A. Pickover. “Is There a Double Smoothly Undulating Integer?”. Journal of Recreational
Mathematics, v.22, n.1, p. 52-53, 1990.

EA Costa, GA Costa, PMMC Catarino INTERMATHS, 5(2), 80–92, June 2024 | 91

http://oeis.org/A094028


6. C. A. Pickover. Wonders of Numbers: Adventures in Mathematics, Mind, and Meaning.
(Chapter 52 and 88). Oxford University Press, 2003.

7. E. A. Costa: G. A. Costa. “Existem números primos na forma 101... 101”. Revista do
Professor de Matemática, n. 103, p. 21-22, 2021.

8. F. S. Carvalho; E. A. Costa. “Um passeio pelos números ondulantes". REMAT: Revista
Eletrônica da Matem’atica, Bento Gonçalves, v. 8, n. 2, p. e3001-e3001, 2022.

9. D. C. Santos; E. A. Costa. “Peculiarities of smoothly undulating number”. INTERMATHS,
v. 4, n. 2, p. 38-53, 2023. https://doi.org/10.22481/intermaths.v4i2.13906

10. E. A. Costa; A. B. Souza. “Números ondulantes na forma 101...101.” Gazeta de Matemática,
n. 202, p. 12-19, 2024. https://gazeta.spm.pt/fichaartigo?id=1682.

11. A. C. Morgado; P. C. P. Carvalho Matemática Discreta. SBM: Coleção ProfMat 16, Rio de
Janeiro, 2015.

12. K. H. Rosen. Discrete mathematics and its applications. The McGraw Hill Companies,
2007.

13. D. C. Santos; E. A. Costa. “A note on Repunit number sequence”. Intermaths, 5(1), 54–66.
2024. https://doi.org/10.22481/intermaths.v5i1.14922.

14. D. C. Santos; E. A. Costa. “Um passeio pela sequência repunidade”. CQD-Revista Eletrônica
Paulista de Matemática, p. 241-254, 2023.

15. E. A. Costa; D. C. Santos; F. S. Monteiro; V. M. A. Souza. “On the Repunit sequence
at negative indices”. Revista de Matemática da UFOP, v. 1, p. 1-12, 2024. Disponível em
<https://doi.org/10.5281/zenodo.11062161>.

© INTERMATHS

CC BY 4.0

92 | https://doi.org/10.22481/intermaths.v5i2.15554 EA Costa, GA Costa, PMMC Catarino

https://doi.org/10.22481/intermaths.v4i2.13906
https://gazeta.spm.pt/fichaartigo?id=1682
https://doi.org/10.22481/intermaths.v5i1.14922
https://doi.org/10.5281/zenodo.11062161
https://periodicos2.uesb.br/index.php/intermaths
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.22481/intermaths.v5i2.15554

