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Resumo
Foi desenvolvido um algoritmo numérico para resolver uma equação diferencial parcial
generalizada de Black-Scholes, que surge na precificação de opções europeias, con-
siderando os custos de transação. O método Crank-Nicolson é usado para discretizar
no tempo e o método de interpolação cúbica de Hermite para discretizar no espaço. A
eficiência e precisão do método proposto são testadas numericamente e, os resultados
confirmam o comportamento teórico das soluções, que também se encontra em boa con-
cordância com a solução exata.
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Abstract
A numerical algorithm for solving a generalized Black-Scholes partial differential equation,
which arises in European option pricing considering transaction costs is developed. The
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Keywords: Nonlinear Black-Scholes, Finite Element Method, Crank-Nicolson, Hermite
Polynomials.

MSC: 65M60, 34K28, 35K55.

Submetido em: 07 de setembro de 2021 – Aceito em: 09 de dezembro de 2021

©2021 INTERMATHS. Publicado por Edições Uesb. � Este é um artigo publicado em acesso aberto (Open Access) sob a licença Creative Commons Atribuição 4.0 Internacional
(CC BY 4.0), disponível em http://creativecommons.org/licenses/by/4.0.

https://doi.org/10.22481/10.22481/intermaths.v2i2.9481
https://orcid.org/0000-0002-2822-1134
mailto:teofilo.chihaluca@ubi.pt
https://pt.wikipedia.org/wiki/Acesso_aberto
http://creativecommons.org/licenses/
http://creativecommons.org/licenses/by/4.0/


Cubic Hermite finite element method for nonlinear Black-Scholes equation governing European options

Teófilo Domingos Chihaluca
24

1 INTRODUCTION

The valuation of options based on stochastic processes dates back to 1877, when Charles
Castelli wrote the book entitled ”The Theory of Option in Stocks and Shares”. Two decades
later, Louis Bachelier, in his dissertation ”Théorie de la spéculation”, presented the first an-
alytical way of calculating the price of an option. Subsequently, in 1955, in an unpublished
manuscript entitled ”Brownian Motion in the Stock Market”, a professor at the Massachusetts
Institute of Technology (MIT), Paul Samuelson, 1970 Nobel Prize in Economics, showed that
the asset price can be modeled by a stochastic process called the Brownian Geometric Mo-
tion. In 1962, A. James Boness presented a dissertation entitled ”Theory and Measurement
of Stock Option Value”, where he announced an option evaluation model that represented a
great step forward from his predecessors and served as the basis for the work later developed
by Black and Scholes. The Black-Scholes model [9] is a well-known popular model which is
used to calculate the price of European options. Since its inception in 1973 by Fischer Black
and Myron Scholes, it remains one of the preferred models and provides a basis for the theory
of financial options. The linear Black-Scholes equation is given by

0 = Vt + 1
2σ

2S2VSS + rSVS − rV, S > 0, t ∈]0, T [, (1)

where V is the option value, T the expiry time, S the underlying asset price, σ the volatility
and r the riskless interest rate.
Equation (1) permits the evaluation of the price of a European option under the assumptions
listed below:

1. the value of the financial asset underlying the option can be modeled by a geometric
Brownian motion;

2. there are no transaction costs associated with the management of financial asset port-
folios, nor fees payable in the market;

3. the market does not allow arbitrage opportunities;

4. short selling is permitted;

5. there is a risk-free rate that is constant throughout the life of the option and it is possible
to lend and borrow at that same rate any financial asset;

6. the volatility of the underlying asset is known and remains constant throughout the
option lifespan;

7. the transaction of the financial asset is made on a continuous basis and changes in its
price are also on a continuous basis;
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8. fractional parts of an asset can be obtained;

9. the financial asset does not pay dividends during the option lifespan.

The classical Black-Scholes model is notable for its explicit closed form solution of European
style options (call and put options). Many researchers have attempted to obtain the solution of
the Black-Scholes Equation analytically and/or numerically, thereby adopting and using various
methods. For a survey of the classical methods (Binomial, Monte Carlo, Finite Differences),
we refer the reader to the survey book [10].

Bohner, Sánchez and Rodríguez [8] applied the Adomian Decomposition Method. Khatske-
vich [7] obtained the option execution price in the form of a Legendre polynomial series. In
[6] Edeki, Ugbebor and Owoloko proposed a method referred to as the Projected Differential
Transformation Method. Altough Finite Element Methods may seem at first glance unneces-
sarily complex for finance, where a large class of problems are one dimensional in space, they
are very flexible and give good approximations ( see, for example [5]).

The Black-Scholes equation is very effective in a market without transaction costs, but
transaction costs may arise when trading securities. Although they are small in general, they
can lead to an increase in the option price in which case the Black-Scholes pricing methodology
will no longer be valid since perfect hedging is impossible.Consequentely, different models have
been proposed to modify equation (1) in order to accommodate transaction costs, such as
those in [11, 12, 13]. In these models, the constant volatility is replaced by a modified volatility
which can depend on time, on the asset price, on the option value and its derivatives. The
resulting model is a nonlinear equation in nondivergence form. For the general nonlinear Black-
Scholes equation an explicit solution is unknown and the numerical tecniques available are far
less than for the linear model.

In 2003, During, Fournié and Jungel ([4]) deduced a high order compact finite difference
scheme for the nonlinear Black-Scholes model with transaction costs presented in [12] which
proved to be unconditionally stable and non-oscillatory.

J. Ankudinova and M.Ehrhardt [14] made a comparative study between models with trans-
action costs and the linear model. The influence of transaction costs modeled by the volatilities
given by the Leland, Barles and Soner and Krakta models was calculated by the Crank-Nicolson
method in time and by the finite difference method in space. They studied the difference be-
tween the price of the European call option with transaction costs and the European call option
price without transaction costs. Their numerical results indicate an economically significant
price deviation between the standard (linear) Black-Scholes model and nonlinear models.

Company, Jódar and Pintos constructed and analysed another finite difference scheme for
the nonlinear Black-Scholes model deduced by Barnes and Soner. Consistency and stability
were studied and some illustrative examples were presented.
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D. Lesmana and S. Wang [3] developed a numerical method for a nonlinear parabolic
partial differential equation resulting from the pricing of European options under transaction
costs. Their method is based on an upwind finite difference scheme for spatial discretization
and on a totally implicit scheme for time discretization. The convergence of the solution of
the discretized system to the viscosity solution of the continuous problem was proved. They
proposed a Newton’s iterative method to solve the resulting nonlinear algebraic system and
showed that the Jacobian matrix of the nonlinear system is an M− matrix and thus the
solution of the system linearized by an iterative scheme is numerically stable. Simulations
were performed to illustrate the accuracy and usefulness of the method, and it was seen that
the convergence orders are about 1.6 and 2 in the discrete norms L∞ and L2, respectively.
The results also showed that the price of a European option is an increasing function of the
parameter a of the transaction cost.

Almeida et al., in ([15],[16],[17]), established convergence, properties and error bounds
for the fully discrete solutions of a class of nonlinear equations of reaction-diffusion nonlo-
cal type, using a linearised Crank-Nicolson-Galerkin finite element method with polynomial
approximations of arbitrary degree.

In [2], Böhmer presented a quite simple and intuitive nonstandard C1 finite element method
to approximate the classical solution of a general fully nonlinear second order elliptic equation.
Using some intricate consistency and stability arguments he proved, under certain conditions,
the existence of a unique solution also derived Optimal order error estimates when u is suffi-
ciently smooth.

In this work, we will apply Böhmer’s method with a C1 cubic Hermite basis for the space
discretization and the Crank-Nicolson method to discretize in the temporal direction. Some
examples will be presented to test the efficiency and accuracy of the proposed method. The
remainder of this paper is organized as follows. In Section 2, the problem is described, consid-
ering some transaction cost models for European options. In Section 3, we define the problem
as a general nonlinear partial differential equation in nondivergent form. In Section 4, we
construct the discretization in spatial direction with the Hermite interpolation method in a
uniform mesh and, in Section 5, we discretize in temporal direction with the Crank-Nicolson
method. In Section 6, we obtain and compare the approximate numerical solutions. Finally,
in Section 7, we draw some conclusions.

2 NONLINEAR BLACK-SCHOLES MODEL

As has been pointed out by several authors [12, 14, 10] the Black-Scholes model requires
a portfolio adjustment in order to protect a risk-free hedge. In the presence of transaction
cost, this adjustment is likely to be more expensive, since an infinite number of transactions
is required [19]. But the hedger needs to find the balance between the transaction costs that
are needed to rebalance the portfolio and the implicit hedging error costs. As a result of
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this ”imperfect” coverage, the option can be overly underestimated, where the risk-free profit
obtained by the arbitrator is offset by the transaction cost so that there is no single equilibrium
price but a viable price range. It has been demonstrated that in a transaction market there is
no replicator portfolio for a European type call option and the portfolio is required to dominate
rather than replicate the option value (see [12]).
Soner, Shreve and Cvitanič [18] have proved that the minimum coverage portfolio of a financial
option is trivial, so efforts have been made to ease the condition coverage criterion to better
replicate pay-off of derivative securities. Because of the presence of transaction costs (see
[12], [13], [11]) the classical model results in a strongly or wholly nonlinear and possibly
degenerate parabolic type diffusion equation where the volatility σ may depend on the time t,
the price S or on other derivatives of the option price V . In this work, we study the nonlinear
Black-Scholes equation with some transaction cost models for European options, with σ a
non-constant modified volatility function

σ̃2 := σ̃2(t, S, VS, VSS).

In this way, Equation (1) becomes the following nonlinear Black-Scholes equation

0 = Vt + 1
2 σ̃

2(t, S, VS, VSS)S2VSS + rSVS − rV, S > 0, t ∈ (0, T ). (2)

A European call option allows the buyer to buy an asset of value S for a value K on the
maturity date T , while a European put option allows the holder to sell an asset of value S for
a value K on the maturity date T . Since the option can only be exercised on maturity, we
complement Equation (2) with the following conditions, in order to avoid arbitrage:

European call option:

V (S, T ) = max{S −K, 0}, when S ≥ 0 (3)

lim
S→∞

V (S, t)
S −Ke−r(T −t) = 1, for t ∈ [0, T ] (4)

V (0, t) = 0, for t ∈ [0, T ] (5)

lim
S→∞

VS(S, t) = 1, for t ∈ [0, T ] (6)

European put option:

V (S, T ) = max{K − S, 0}, when S ≥ 0 (7)
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V (0, t) = Ke−r(T −t), for t ∈ [0, T ] (8)

lim
S→∞

V (S, t) = 0, for t ∈ [0, T ] (9)

lim
S→∞

VS(S, t) = 0, for t ∈ [0, T ] (10)

2.1 Leland’s model

In [11], Leland deduces that the option price is the solution of the nonlinear Black-Scholes
Equation (2), with modified volatility given by

σ̃2 = σ2
(

1 + Le× sign(VSS)
)
. (11)

In (11) Le is Leland’s number, which is given by

Le =
√

2
π

(
k

σ
√
δt

)
(12)

where δt is the interval between two successive revisions of the portfolio, k is the round trip
transaction cost per transacted monetary unit and σ represents the historical volatility.
By a different process, Boyle and Vorst [1] deduced a similar modified volatility, given by

σ̃2 = σ2
(

1 + Le

√
π

2 sign(VSS)
)
. (13)

However, δt (12) represents the interval between two successive portfolio reconstructions and
not the transaction frequency as in (13) (see [12]).

2.2 Barles’ and Soner’s model

Barles and Soner developed a complex model based on the Hedges and Neuberger [20]
utility function approach. In order to simplify the calculations, they proposed in [12], the
volatility model

σ̃2 = σ2
(
1 + er(T −t)a2S2VSS

)
, (14)

where σ is the historical volatility and a = k√
ε
. They proved the existence of a viscosity solution

for the European option with the volatility given by (14) and their numerical results indicate
an economically significant price difference between the standard Black-Scholes model and the
nonlinear model with transaction costs.
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2.3 Kratka’s model

The model proposed by Krakta in [13] minimizes the sum of the rate of the transaction
costs and the rate of the risk from an unprotected portfolio. In this way, the portfolio is well
protected with the Risk Adjusted Pricing Methodoly (RAPM) and the modified volatility is
given by

σ̃2 = σ2

1 + 3
(
C2M

2π SVSS

) 1
3
 , (15)

where M ≥ 0 is the measure of the transaction cost and C ≥ 0 the risk premium.

It should be noted that the nonlinear transaction cost models described above are all
consistent with the linear model if the additional parameters for the transaction cost are zero.

3 NONLINEAR GENERAL EQUATION

In this work, we study equations of the form:

ut = c0uxx + c1ux + c2u+ f, with a < x < b, 0 < t < T, (16)

under the initial and boundary conditions

u(x, 0) = u0(x), a < x < b, (17)

u(a, t) = g1(t)

u(b, t) = g2(t)
and

ux(a, t) = g3(t)

ux(b, t) = g4(t)
0 < t < T, (18)

where c0 = c0(x, t, u, ux, uxx), c1 = c1(x, t, u, ux), c2 = c2(x, t, u), f = f(x, t), g1(t), g2(t),
g3(t), g4(t) and u0(x) are known real bounded functions.
Note that (16)-(18) is a general model which includes the problem under study. The trans-
formation u(x, t) = V (S, T − t) transforms (2) into (16) with c0 = 1

2 σ̃
2x2, c1 = rx, c2 = −r

and f = 0, and the initial condition becomes

u(x, 0) = max{K − x, 0} or u(x, 0) = max{x−K, 0}

by (3) and (7).
For a call option, condition (5) is satisfied considering g1(t) = 0. For b sufficient large condi-
tions, (4) and (6) can be approximated by g2(t) = b−Ke−rt and g4(t) = 1.
Since we require another condition, motivated by the behavior of the solution for the linear
equation, we consider g3(t) = 0.
For a put option, (8), (9) and (10) imply that g1(t) = Ke−rt, g2(t) = 0, g3(t) = −1 and
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g4(t) = 0.

Let w be a test function. Multiplying (16) by w and integrating in ]a,b[, we obtain

b∫
a

utw dx−
b∫

a

c0uxxw dx−
b∫

a

c1uxw dx−
b∫

a

c2uw dx =
b∫

a

fw dx. (19)

Since c0 depends on uxx, integration by parts is useless. For relation (19) to make sense, we
most have u, ut, ux and uxx ∈ L2(a, b), that is, u must be in C1(a, b), for t ∈]0, T ]. According
to the conditions in (18), we choose the test function space to be

V0 = {w,wx, wxx ∈ L2(a, b) : w(a) = w(b) = wx(a) = wx(b) = 0},

and for the space solution we consider

V = {u, ut, ux, uxx ∈ L2(a, b) : u(a, t) = g1(t), u(b, t) = g2(t), ux(a, t) = g3(t), ux(b, t) =
g4(t) , for all t ∈ [0, T ]},

4 DISCRETIZATION IN SPACE

We consider the discretization a = x0 < x1 < · · · < xm+1 = b of [a, b] with spacing h

and since continuity in C1 is required, we define for each node xi, two Hermite interpolation
polynomials, ϕi(x) and ψi(x). The Hermite interpolation polynomials have support [xi−1, xi+1]
and are defined by

ϕi(x) =

−2
(

x−xi

h

)3
− 3

(
x−xi

h

)2
+ 1, x ∈ [xi−1, xi[,

2
(

x−xi

h

)3
+ 3

(
x−xi

h

)2
+ 1, x ∈ [xi, xi+1],

(20)

and

ψi(x) =


(x−xi)3

h2 + (x−xi)2

h
+ (x− xi) , x ∈ [xi−1, xi[

(x−xi)3

h2 − (x−xi)2

h
− (x− xi) , x ∈ [xi, xi+1]

(21)

The Hermite cubic polynomials satisfy the following interpolation properties:

ϕj(xi) =

1 , i = j

0 , i 6= j
, ϕ′

j(xi) = 0, (22)

ψj(xi) = 0, ψ′
j(xi) =

1 , i = j

0 , i 6= j
, i, j = 0, . . . ,m+ 1 (23)

and hence they satisfy the required continuity conditions.
Let H = 〈ϕ0, ψ0, ϕ1, ψ1, · · · , ϕm+1, ψm+1〉 be the vector subspace generated by the 2m + 2
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elements of the Hermite basis. Let us consider the test function in

V0m = {wm(x) ∈ H : wm(a) = wm(b) = (wm)x(a) = (wm)x(b) = 0} ⊂ V0

and the approximate solution in

Vm = {um(x, t) ∈ H : um(a, t) = g1(t), um(b, t) = g2(t),

(um)x(a, t) = g3(t), (um)x(b, t) = g4(t), for all t ∈ [0, t]} ⊂ V.

A function um ∈ Vm is said to be an approximate solution of (19) if, for each t ∈]0, T ], it
satisfies

b∫
a

(um)twm dx−
b∫

a

c0(um)xxwm dx−
b∫

a

c1(um)xwm dx

−
b∫

a

c2(um)wm dx =
b∫

a

fwm dx, for all wm ∈ V0m. (24)

Any function wm ∈ V0m can be written as

wm(x) =
m∑

i=1
Wiϕi(x) + Ziψi(x), (25)

and any function um ∈ Vm can be written as

um(x, t) = ϕ0(x)g1(t) + ψ0(x)g3(t) +
m∑

i=1
ϕi(x)Ui(t) + ψi(x)Vi(t)

+ϕm+1(x)g2(t) + ψm+1(x)g4(t). (26)

Substituting (25) and (26) in equation (24) and simplifying the expressions, we obtain a
system of ordinary differential equations, which can be written in matrix form:

MU(t)′ − A(U(t))U(t) −B(U(t))U(t) − C(U(t))U(t) = F (t) +D(t), (27)

with the unknown
U(t) = [U1, ..., Um, V1, ..., Vm]T .

and where matrices are given by:

M =
 M1 M2

MT
2 M3

 ,
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M1(i, j) =
∫ b

a
ϕi ϕj dx, M2(i, j) =

∫ b

a
ϕi ψj dx, M3(i, j) =

∫ b

a
ψi ψj dx

A =
 A1 A2

A3 A4

 ,
A1(i, j) =

∫ b

a
c0(U)ϕi ϕ

′′
j dx, A2(i, j) =

∫ b

a
c0(U)ϕi ψ

′′
j dx,

A3(i, j) =
∫ b

a
c0(U)ψi ϕ

′′
j dx, A4(i, j) =

∫ b

a
c0(U)ψi ψ

′′
j dx

B =
 B1 B2

B3 B4

 ,
B1(i, j) =

∫ b

a
c1(U)ϕi ϕ

′
j dx, B2(i, j) =

∫ b

a
c1(U)ϕi ψ

′
j dx, ϕ

′
j dx

B3(i, j) =
∫ b

a
c1(U)ψi ϕ

′
j dx, B4(i, j) =

∫ b

a
c1(U)ψi ψ

′
j dx

C =
 C1 C2

CT
2 C3

 ,
C1(i, j) =

∫ b

a
c2(U)ϕi ϕj dx, C2(i, j) =

∫ b

a
c2(U)ϕi ψj dx,

C3(i, j) =
∫ b

a
c2(U)ψi ψj dx

F =
 F1

F2

 , F1(i) =
∫ b

a
fϕi dx, F2(i) =

∫ b

a
fψi dx,

D =
 D1

D2


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D1(i) =

−M1(i, 0)g′
1(t) −M1(i, n+ 1)g′

2(t) −M2(i, 0)g′
3(t) −M2(i, n+ 1)g′

4(t)

+A1(i, 0)g1(t) + A1(i, n+ 1)g2(t) + A2(i, 0)g3(t) + A2(i, n+ 1)g4(t)

+B1(i, 0)g1(t) +B1(i, n+ 1)g2(t) +B2(i, 0)g3(t) +B2(i, n+ 1)g4(t)

+C1(i, 0)g1(t) + C1(i, n+ 1)g2(t) + C2(i, 0)g3(t) + C2(i, n+ 1)g4(t)

and

D2(i) =

−MT
2 (i, 0)g′

1(t) −MT
2 (i, n+ 1)g′

2(t) −M3(i, 0)g′
3(t) −M3(i, n+ 1)g′

4(t)

+A3(i, 0)g1(t) + A3(i, n+ 1)g2(t) + A4(i, 0)g3(t) + A4(i, n+ 1)g4(t)

+B3(i, 0)g1(t) +B3(i, n+ 1)g2(t) +B4(i, 0)g3(t) +B4(i, n+ 1)g4(t)

+CT
2 (i, 0)g1(t) + CT

2 (i, n+ 1)g2(t) + C3(i, 0)g3(t) + C3(i, n+ 1)g4(t)

In general, the solution U(t) is not explicitly known for all t ≥ 0, so it is necessary to use a
numerical method to obtain an approximate solution.

5 DISCRETIZATION IN TIME

Let us now consider the partition 0 = t0 < t1 < · · · < tN = T , with step δ, of [0, T ]. By
the Cranck-Nicolson method, evaluating (27) in tn+ 1

2
= tn+tn+1

2 and using the approximations

U ′(tn+ 1
2
) ≈ U(tn+1) − U(tn)

δ
= Un+1 − Un

δ
(28)

and
U(tn+ 1

2
) ≈ U(tn+1) + U(tn)

2 = Un+1 + Un

2 , (29)

we obtain

(2M + δ (An+1 +Bn+1 + Cn+1)Un+1 = (2M − δ (An+1 +Bn+1 + Cn+1))Un

+2δFn+1/2 − 2δDn+1/2, n = 0, 1, · · · , N − 1. (30)

Since the function f(x, t) is known, Fn+1/2 = F (x, tn+1/2) is also known for all n. Then,
for each n = 0, 1, · · · , N − 1, the system of algebraic equations (30), may be solved using the

INTERMATHS | Vol. 2 | N. 2 | Jul - Dez 2021



Cubic Hermite finite element method for nonlinear Black-Scholes equation governing European options

Teófilo Domingos Chihaluca
34

fixed point scheme:

[
2M + δ

(
A

(k)
n+1 +B

(k)
n+1 + C

(k)
n+1

)]
U

(k+1)
n+1 = (2MUn

−δ
(
A

(k)
n+1 +B

(k)
n+1 + C

(k)
n+1

)
)Un + 2δFn+1/2 − 2δDn+1/2 (31)

U
(0)
n+1 = Un and n = 1, 2, . . . , N k = 1, 2, . . . .

6 NUMERICAL RESULTS

In this section, we present the results of a Matlab implementation of the theory. First
we validate the code by simulating the linear equation and calculating the error and then we
compare the solutions of the nonlinear equation obtained with the different modified volatilities
presented.

Example 1: In order to calculate the value of the call and put options, we transform the
Black-Scholes equation in(1) into an equivalent equation which is easier to solve, considering
the new variables y = log(S) and τ = T − t, and apply the separation of variables method to
the new equation to obtain the solution,

V (S, t) = Aert+
√

λ ln(S)+
√

λ(r− 1
2 σ2)(T −t)+ λσ2

2 (T −t)

+Be−rt−
√

λ ln(S)−
√

λ(r− 1
2 σ2)(T −t)+ λσ2

2 (T −t), (32)

where
A,B ∈ R and λ > 0.

Condition (5) implies that B = 0, but conditions (3) and (6) are not satisfied.
We simulated equation (1) with r = 0.1, σ = 0.2, λ = 25, A = 1, a = 0, b = 1,
T = 1, g1(t) = 0, g2(t) = e(0.5−0.4t), g3(t) = 0, g4(t) = 5e(0.5−0.4t) and u0(x) =
e5ln(x)+0.5.
In figure 1,the picture on the left shows the convergence error for h, with δ = 0.0001 and
varying values of h = 0.333, 0.170, 0.1, 0.056, 0.032, 0.018. In the picture on the right we have
the convergence error for δ, considering h = 0.001 and varying values of δ = 0.1, 0.01, 0.001.

We observe that convergence orders are optimal, that is O(h4) for the solution, O(h3) for its
derivative and O(δ2) for both solution and derivative.

Example 2: The analytical solution of the linear Black-Scholes equation in (1), where
both r and σ are constant and satisfy condition (3), is given by the well-known formula [10]

V (S, t) = SN(d1) −Ke−r(T −t)N(d2) (33)
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Figure 1: Convergence analysis for h and for δ in example 1.

where N(x) = (1/2π)
x∫

−∞
e

−y2
2 dy, x ∈ R is the cumulative distribution function of N(0, 1),

d1 = {log (S/K) + (r + σ2/2) (t−T )}/
(
σ

√
t− T

)
and d2 = d1 −σ

√
(t− T ). Knowing the

exact explicit solution permitted us to calculate the exact error of the approximations. We sim-
ulated equation (16) using the parameters T = 1, r = 0.1, σ = 0.2, a = 0.4, b = 1, K = 0.4,
T = 1, g1(t) = 0, g2(t) = 1 − 0.4ert, g3(t) = 0, g4(t) = 1 and u0(x) = max{x− 0.4, 0}.
In Figure 2, we present the solution obtained with h = 0.01 and δ = 0.001, at some instants.
We may observe that the behaviour is similar to the behaviour of the exact solution.
In figure 3, the convergence error for h is studied, where we consider a fixed value δ = 0.001
and different values of h = 0.1, 0.01, 0.001. For each value of h, we calculated the error in
the L2(a, b) norm and we collected the results in the graph presented.
From the graph we may conclude that the convergence is only of order 2. We suspect that

Figure 2: Obtained solution in example 2. Figure 3: Convergence analysis for h in ex-
ample 2.

this behaviour is due to the fact that the solution is not regular, since in Example 1 the order
of convergence is 4.

Example 3: In order to compare the behaviour of the solution for the different models
presented, we simulated Equation (16) for each model for a European call. In Figure 4, we
represent the solution and the first derivative of the nonlinear Black-Scholes equation for the
different transaction cost models at t = 0. The parameters used are: r = 0.2, σ = 0.2,
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Le = 0.6, M = 30, C = 0.01, a2 = 0.4, K = 0.4, T = 1, h = 0.1, δ = 0.001,
g1(t) = 0, g2(t) = 1 − 0.4ert, g3(t) = 0, g4(t) = 1 and u0(x) = max{x− 0.4, 0}.

Figure 4: Solution (left) and its derivative (right) of the nonlinear Black-Scholes equation with
different transaction costs for a European call option.

Example 4: Finally we simulated Equation (16) for each model for a European put.
In each picture of Figure 5 we represented the solution and also the first derivative of the
nonlinear Black-Scholes equation for the different transaction costs models. The parameters
used are: r = 0.2, σ = 0.2, Le = 0.6, M = 30, C = 0.01, a2 = 0.4, K = 0.4,
T = 1, h = 0.1, δ = 0.001, g1(t) = 0.4ert − 1, g2(t) =0, g3(t) = −1, g4(t) = 0
and u0(x) = max{0.4 − x, 0}.

Figure 5: Solution (left) and its derivative (right) of the nonlinear Black-Scholes equation with
different transaction costs for a European put option.

The chart shows that the difference between the various transaction cost models is not signif-
icant. At this point, with the given parameters, the Leland model provides the highest price,
followed by the Barles and Soner model, the Kratka model, and finally the linear model with
constant volatility without transaction costs. An analysis from the initial date to the maturity
date permits us to conclude that the difference between the various models decreases as the
expiration date approaches. This is an expected consequence of the decreasing necessity of
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portfolio adjustment and hence lower transaction costs closer the to expiry date. The differ-
ence is bigger at the beginning of the year, where the nonlinear price is higher than the linear
price.

7 CONCLUSIONS

A finite element method based on Hermite polynomials to solve the nonlinear problem
in the non-divergent form, in a domain with fixed boundaries, was presented. The program
resulting from the implementation of this method in Matlab code was tested with the linear
equation. The error and convergence were analysed in Examples 1 and 2. In Example 1,
the finite element method has a convergence order of approximately 4 for the solution and 3
for its derivative, and the Crank-Nicolson method has order O(δ2), for the solution and its
derivative. In Example 2, the Crank-Nicolson method presents a convergence order of 2, for
both the solution and its derivative, while the finite element method has a convergence order
of approximately 2 for the solution and 2 for its derivative, which does not fit the methods
applied in this work. In Examples 3 and 4, the solution and the derivative of the nonlinear
Black-Scholes equation were simulated with the different transaction cost models, taking into
account the European-type call and put options. The study shows that the difference is not
significant for all transaction cost models and it decreases the closer we are to the expiration
date. As future work, we will carry out a similar study for American options.
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