Estimação Robusta para Sistemas Lineares Sujeitos a Saltos Markovianos em um Cenário de Fusão de Dadoss
DOI:
https://doi.org/10.22481/intermaths.v3i1.10715Palavras-chave:
Sistemas Markovianos, Fusão de Dados, Robustez, Filtro de KalmanResumo
Este artigo considera o problema de estimação recursiva robusta para sistemas lineares sujeitos a saltos Markovianos de tempo discreto em um cenários de fusão de dados ponderados e probabilísticos. O problema é declarado em termos da otimização de um apropriado funcional quadrático em um cenário de fusão de dados. As estimativas aqui apresentadas foram desenvolvidas baseadas em sistemas com mais de uma equação de medida. Exemplos numéricos são apresentados para verificar a eficácia dos algoritmos propostos.
Downloads
Metrics
Referências
[1] O. L. do V. Costa, “Linear minimum mean square error estimation for discrete-time Markovian jump linear systems,” IEEE Transactions on Automatic Control, vol. 39, no. 8, pp. 1685 - 1689, 1994. https://doi.org/10.1109/9.310052
[2] O. L. V. Costa and S. Guerra, “Stationary Filter for Linear Minimum Mean Square Error Estimation for Discrete-Time Markovian Jump Linear Systems,” IEEE Transactions on Automatic Control, 47, 1351 - 1356, 2002. https://doi.org/10.1109/tac.2002.800745
[3] M. S. Mahmoud, P. Shi, A. Ismail, “Robust Kalman filtering for discrete-time Markovian jump systems with parameter uncertainty,” Journal of computational and applied mathematics, vol. 169, no. 1, pp. 53 - 69, 2004. https://doi.org/10.1016/j.cam.2003.11.002
[4] Z. Wang, J. Lam, X. Liu, “Robust filtering for discrete-time Markovian jump delay systems,” IEEE Signal Processing Letters, vol. 11, no. 8 pp. 659 - 662, 2004. https://doi.org/10.1109/lsp.2004.831729
[5] L. Zhang, “H ∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems,” Automatica, vol. 45, no. 11, pp. 2570 - 2576, 2009. https://doi.org/10.1016/j.automatica.2009.07.004
[6] A. P. C. Gonçalves, A. R. Fioravanti and J. C. Geromel, “Markov jump linear systems and filtering through network transmitted measurements,” Signal Processing, 90, 2842 - 2850, 2010. https://doi.org/10.1016/j.sigpro.2010.04.007
[7] Q. Sun, C.-C. Lim, P. Shi, F. Liu, “Design and stability of moving horizon estimator for Markov jump linear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 3 pp. 1109 - 1124, 2018. https://doi.org/10.1109/tac.2018.2816102
[8] L. Wang, X. Gao, S. Cai, X. Xiong, “Robust Finite-Time H ∞ Filtering for Uncertain Discrete-Time Nonhomogeneous Markovian Jump Systems,” IEEE Access, vol. 6, pp. 52561 - 52569, 2018. https://doi.org/10.1109/access.2018.2870565
[9] S. H. Kim, “Robust H ∞ filtering of discrete-time nonhomogeneous Markovian jump systems with dual-layer operation modes,” Journal of the Franklin Institute, vol. 356, no. 1, pp. 697 - 717, 2019. https://doi.org/10.1016/j.jfranklin.2018.11.004
[10] Z. Zhou, X. Luan, F. Liu, “High-Order Moment Recursive State Estimation of Markov Jump Linear Systems,” IEEE Access, vol. 6, pp. 70788 - 70793, 2018. https://doi.org/10.1109/access.2018.2881281
[11] Y. Yang, Y. Qin, Q. Pan, Y. Yang, Z. Li, “Recursive linear optimal filter for Markovian jump linear systems with multi-step correlated noises and multiplicative random parameters,” International Journal of Systems Science, vol. 50, no. 4, pp. 749 - 763, 2019. https://doi.org/10.1080/00207721.2019.1568607
[12] M. H. Terra, J. Ishihara, G. Jesus and J. P. Cerri, “Robust estimation for discrete-time Markovian jump linear systems,” IEEE Transactions on Automatic Control, 58, 2065 - 2071, 2013. https://doi.org/10.1109/tac.2013.2246475
[13] I. Matei and J. S. Baras, “A linear distributed filter inspired by the Markovian jump linear system filtering problem,” Automatica, 48, 1924 - 1928, 2012. https://doi.org/10.1016/j.automatica.2012.05.028
[14] J. Liang, Z. Wang, X. Liu, “Distributed state estimation for uncertain Markov-type sensor networks with mode-dependent distributed delays,” International Journal of Robust and Nonlinear Control, vol. 22, no. 3, pp. 331 - 346, 2012. https://doi.org/10.1002/rnc.1699
[15] Y. Gao, X. R. Li, Z. Duan, “Estimation fusion for Markovian jump linear system via data transformation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 1, pp. 240 - 253, 2014. https://doi.org/10.1109/taes.2013.110740
[16] Y. Yang, Y. Liang, Q. Pan, Y. Qin, F. Yang, “Distributed fusion estimation with square-root array implementation for Markovian jump linear systems with random parameter matrices and cross-correlated noises,” Information Sciences, vol. 370, pp. 446 - 462, 2016. https://doi.org/10.1016/j.ins.2016.08.020
[17] W. Li, Y. Jia, “Distributed estimation for Markov jump systems via diffusion strategies,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 1, pp. 448 - 460, 2017. https://doi.org/10.1109/taes.2017.2650801
[18] H. Geng, Z. Wang, Y. Liang, Y. Cheng, F. E. Alsaadi, “State estimation for asynchronous sensor systems with Markov jumps and multiplicative noises,” Information Sciences, vol. 417, pp. 1 - 19, 2017. https://doi.org/10.1016/j.ins.2017.07.001
[19] A. H. Sayed, T. Y. Al-Naffouri and T. Kailath, “Robust Estimation for Uncertain Models in a Data Fusion Scenario,” System Identification, 3, 899 - 904, 2000. https://doi.org/10.1016/s1474-6670(17)39867-1
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2022 INTERMATHS
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of Revista INTERMATHS/Journal INTERMATHS is licensed under a Creative Commons - Atribuição 4.0 Internacional (CC-BY 4.0).