A note on repunit number sequence
DOI:
https://doi.org/10.22481/intermaths.v5i1.14922Resumo
In this paper, we investigate the classical identities of the repunit sequence with integer indices in light of the properties of Horadan-type sequences. We highlight particularly the Tagiuri-Vajda Identity and Gelin-Cesàro Identity. Additionally, we prove that no repunit is a perfect power, either even or odd. Finally, we address a divisibility criterion for the terms of repunit rn by a prime p and its powers.
Downloads
Não há dados estatísticos.
Downloads
Publicado
2024-06-30
Edição
Seção
Artigos
Licença
Copyright (c) 2024 INTERMATHS

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of Revista INTERMATHS/Journal INTERMATHS is licensed under a Creative Commons - Atribuição 4.0 Internacional (CC-BY 4.0).