Different approaches to calculate real integrals
DOI:
https://doi.org/10.22481/intermaths.v2i2.9487Keywords:
Teorema dos Resíduos, Lema de Jordan, Funções Analíticas, Integrais ReaisAbstract
We present three distinct ways to approach a real integral, a class of integrals, since the integral depends on two parameters. The first way uses a general result, a theorem; the second way, complex variables, through of the residue theorem and Jordan's lemma, while the third way, an artifice through real functions, without using the complex plane. The goal is to make the student choose the best way to approach this class of integrals, or possibly, propose another different way.
Downloads
Metrics
References
Vaz Jr, J. e De Oliveira, E. C. Métodos Matemáticos, Volume 1, 1ªed. Campinas: Editora da Unicamp, 2016.
De Oliveira, E. C. e Rodrigues Jr., W. A. Funções Analíticas com Aplicações, 1ªed. São Paulo: Editora Livraria da Física, 2005.
Churchill, R. V. Variáveis Complexas e suas Aplicações, 1ªed. São Paulo: Editora da Universidade de São Paulo-Editora McGraw-Hill do Brasil, 1975.
Ablowitz, M. J. and Fokas, A. S. Complex Variables: Introduction and Applications, in Cambridge Texts in Applied Mathematics, 1 st ed. Cambridge: Cambridge University Press, 1999.
Vaz Jr, J. e De Oliveira, E. C. Métodos Matemáticos, Volume 2, 1ªed. Campinas: Editora da Unicamp, 2016.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional