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Abstract—The present work defines the basic elements for

the introduction to the Study of Complex variables under the
mathematical interval context with the goal of using it as a
foundation for the understanding of pure mathematical problems,
associating the mathematical interval to support the results.
The present article contributes to the complex interval theory
taking into consideration Euler’s Identity and redefining the
polar representation of interval complex numbers. In engineer-
ing, the present article could be used as a subsidy for many
applications where complex variable theory is applicable and
requires accurate results.

Index Terms—Complex Interval, Complex Interval Numbers,
Complex Interval Variable

I. INTRODUCTION

In pure and applied mathematics there are problems in-
volving continuous sets as real and complex numbers. This
knowledge can be employed in engineering sciences, such as
numerical analysis, dynamic systems, fazorial analysis [7],
computational geometry [21], signals processing and digital
images [6], [12] as well as the theory of optimization among
others. However, in most cases there is no numerical error
analysis, thus taking for granted the uncertainty and insecurity
of the results. Thus there is a necessity for an approach to solve
continuous problems using mathematical intervals.

Under the topic of real numbers, several approaches on
intervals are well known [13], [14], [15] [1], [17] and
[10] however, there is little work done on or few references
are available on complex numbers and this field needs to be
enriched.

In this work, there are definitions of some basic elements
on complex interval theory, which is a mathematical theory
on interval of complex numbers that serve as a foundation for
problems on mathematical applications but at the same time
associating it with mathematical interval to offer reliability to
the results that are being introduced.

The authors believe that the present work contributes to
the use of complex data number type that needs precision
and accuracy on complex numerical data treatment as well
as an addition to the mathematical literature. Definitions are
suggested in this article, under the understanding of complex
numbers and introducing Euler’s identity solutions for the
interval case and defining a polar representation. For this, it
was necessary to evaluate the current information available
on the main definitions of interval complex number and their
influence on some of the jobs selected in this area [4] and
[16].

This work also attenps to fill in a gap in mathematical
modelling in the research area of robotics, sensors fusion,
autonomous tracking, innacurate robot lacalization, such as in
the work by Kieffer, Jaulin and Walter [9]. Jaulin uses interval
analysis for planning free-collision paths for mobile robots
[8]. Interval analysis was also used for vehicle localization to
solve problems of telemetric imprecision data by Leveque in
[11] and it is used as fundamentation of interval digital signal
processing in [18].

II. THE COMPLEX NUMBERS

In the XV Century mathematicians like Cardano and
Bombelli, among others, carried out studies on negative num-
bers. Two centuries later, Wesses, Argand and Gauss continued
this work and they are being considered as the creators of the
theory of complex numbers, which became an important tool
in engineering.

A. Basic Definitions

Definition 1 (Complex numbers):
Let a, b ∈ R and z = a + bi, where i =

√
−1, then, z is

called a complex number.
The set of all complex numbers is called complex plan and

it is denoted by C.



This set provides arithmetical operations such as addition,
subtraction, multiplication, and division.

Geometrically, a complex number is seen as a point in the
complex plan, as viewed in figure 1.

Fig. 1. Cartesian representation of a complex number

6

-

Definition 2 (Equality between complex numbers):
Let x, y ∈ C where x = a + bi and y = c + di. x = y if

a = c and b = d.

Definition 3 (Conjugation of a complex number):
Let z = a+ bi ∈ C. z = a− bi is the conjugation of z.

Definition 4 (Addition, subtraction and multiplication on C):
Let x, y ∈ C where x = a + bi and y = c + di. The

operations of addition, subtraction and multiplication in C are
defined through the intervals of basic arithmetical operations:
• x+ y = (a+ bi) + (c+ di) = (a+ c) + (b+ d)i
• x− y = (a+ bi)− (c+ di) = (a− c) + (b− d)i
• x× y = (a+ bi)× (c+ di) = (ac− bd) + (ad+ bc)i

Definition 5 (Inverse of the complex numbers):
Let z = a+bi, the inverse of z, denoted z−1, is the complex

number, so that z × z−1 = 1

Definition 6 (Division between complex numbers):
x÷ y = x× y−1 for y 6= 0 + 0i

Definition 7 (Module of a complex number):
Let z ∈ C where z = a+ bi. Then the real number

| z |=
√
a2 + b2

is called module of z.

Definition 8 (Distance between complex numbers):
Let x = a + bi and y = c + di ∈ C. The function

dc : C×C→ R,defined by dc(x, y) =
√
(a− c)2 + (d− b)2,

is called the distance in between x, y.

Theorem 2.1:
dc is a metric.

Proof: This metric dc is congruent with euclidian metric on
the space R2.

B. Order in complex numbers

It is known that the complex numbers are not totally
ordered, but different partially ordered complex numbers exist.
In some of the problems in physics, a partial order based on

the understanding of module is used, where the distance of
the vector from a point of origin will be analyzed.

Definition 9 (Partial order in a set of complex numbers using
module):

Let x, y ∈ C. x is less than or equal to y, denoted by x � y,
if |x| ≤ |y|.

In this order the complex number z1 is less than the complex
number z2 if the point z2 is away from the origin than the point
z1. It is well known that the real numbers set is immersed in
the complex numbers set, but the usual immersion (f(r) = r+
0i) and this order on the complex numbers does not preserve
the usual real order, for example, −2 ≤ 1 in real numbers, but
clearly −2 + 0i 6� 1 + 0i.
Another natural partial order on the set of a complex number
is a constructed one, by analyzing the geometrical position of
the complex numbers.

Definition 10 (Natural partial order in a set of complex
numbers):

Let x, y ∈ C. x is less or equal to y, denoted by x ≤ y, if
exists n ∈ C+ = {a+ bi|a, b ≥ O} so that x+ n = y.

Note that, trivially, this order preserves the usual real order,
i.e. if r ≤ s then r + 0i ≤ s+ 0i.

Proposition 2.2:
Let x, y ∈ C, where x = a + bi and y = c + di. x ≤ y, if

and only if, a ≤ c and b ≤ d.

Proof:
⇒ Let x = a + bi, y = c + di ∈ C. If x ≤ y then ∃n =

e+ fi ∈ C+ so that, x+ n = y.
So (a + bi) + (e + fi) = c + di a + bi + e + fi = c + di
a+e+bi+fi = c+di (a+e)+(b+f)i = c+di. Therefore,
c = a+ e and d = b+ f if e, f ≥ 0, then a ≤ c and b ≤ d.
⇐ Let a, b, c, d ∈ R. If a ≤ c and b ≤ d then ∃ e, f ∈ R+

so that, c = a+ e and d = b+ f .
Let x = a+ bi, y = c+ di and n = e+ fi.

Thus

y = c+ di
= (a+ e) + (b+ f)i
= a+ e+ bi+ fi
= a+ bi+ e+ fi
= x+ n.

Consequently, x ≤ y.

In this work the natural partial order on the set of complex
numbers will be only used for the construction of the complex
interval numbers, as can be seen in figures 3 and 4, and for
the arithmetical operations. In physical applications the partial
order in a set of complex numbers using module will be used.

C. Polar representation of complex numbers

We may recall that each point P of the plane and hence
each complex number z is uniquely determined by two polar
coordinates ρ and α, where ρ is the length (non-negative) of
the segment −→op, which joins the point P to the origin and α is
the angle formed between the x axis and this segment, which
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is called the argument or amplitude of P . We can see it in
figure 2.

Fig. 2. Graph representation of polar form of a complex number
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Considering the trigonometric relations from polar repre-
sentation, as can be seen in figure 2, the polar coordinates
(ρ, α) of the point z = a + bi can be determined as follows:
a = ρ cos(α) and b = ρ sin(α) Thus,

z = a+ bi
= ρ cos(α) + ρ sin(α)i
= ρ[cos(α) + i sin(α)].

Conversely, the polar coordinates can be obtained from their
Cartesian coordinates as follows: ρ = |z| =

√
a2 + b2 and

α = arctan( ba ).

Theorem 2.3: Euler’s identity
eiα = cos(α) + i sin(α)

Proof: The proof of this theorem can be seen in [20].

III. COMPLEX INTERVAL NUMBERS

The complex number has the property of representation and
manipulation of two variables as a single quantity. This is quite
natural with the Fourier analysis, where the field of frequency
is composed by two signals, the real and imaginary part. In
some way the complex number simplifies the equations used
in Digital Signal Processing (DSP) and provides techniques
which could be difficult or impossible only with real numbers.
This work proposes an interval version for complex numbers
for use in signal processing, where we intend to solve the
problem mentioned by Boche [4] i.e. the incompatibilization
between the rectangular form and the polar form of interval
complex numbers which can be seen in more recent work
as [3], [5] and [2]. To do so, we describe complex interval
numbers, their rectangular form, their polar form and their
properties and we present a version of Euler’s identity for
interval complex numbers.

The complex intervals are a generalization of the real
intervals and it could be seen that any real interval can be seen
as a real complex interval. However, some of the definitions
and their implications that will contribute to the different fields
of engineering in their future applications are presented here.

Definition 11 (Complex interval):

Let A,B ∈ IR. Z = A+Bi, where i =
√
−1 is called an

interval complex number. The set formed by all the interval
complex numbers is denoted by IC.

Observation 3.1:
Geometrically, an interval complex number is seen as a

closed rectangular region in the complex plane, whose sides
are parallel to the coordinates. It can be constructed through
the intersection of the regions shown in figure 3.
Let A = [a1, a2], B = [b1, b2] ∈ IR. Note that,
Z = A+Bi

= [a1, a2] + [b1, b2]i
= [a1, a2] + [b1i, b2i]
= [a1 + b1i, a2 + b2i]
= {c ∈ C|a1 + b1i ≤ c ≤ a2 + b2i}.

Thus, an interval complex number can be identified with
an interval of complex numbers. This formation can be better
seen in figures 4,5 and 6.

From definition 11, one could see that the complex intervals
generalize the real intervals; moreover, every complex number
is a complex interval.

a If A ∈ IR, it could be represented as A + [0, 0]i,
therefore A ∈ IC;

b If z = a+ bi ∈ C, then
Z = [a, a] + [b, b]i

= [a+ bi, a+ bi]
= [z, z]
= {c ∈ C|z ≤ c ≤ z}
= {z}

Thus, z can be represented by the degenerate
complex interval Z = {z}, therefore z ∈ IC.

Note: In this work we consider

A2 = [max{0,min{a1a2, a21, a21}}; max{a1a2, a21, a21}].

Definition 12 (Arithmetical operations between complex
intervals):

Let X = A+Bi and Y = C +Di ∈ IC. The arithmetical
operations addition, subtraction, multiplication and division in
IC are defined through their respective real interval arithmeti-
cal operations:
• X + Y = (A+ C) + (B +D)i
• X − Y = (A− C) + (B −D)i
• X × Y = (AC −BD) + (AD +BC)i
• X ÷ Y = AC−BD

C2+D2 + BC−AD
C2+D2 i for 0 6∈ (C2 +D2)

A. Order in Interval Complex Numbers

Several orders have been defined about the real interval
numbers ( Moore [14], Kulisch-Miranker [10], Moore’s inclu-
sion order [14] and information order by Scott [19] and Acióly
[1]), and these sets can be extended to the interval complex
numbers. In this article, we extended Kulisch-Miranker’s order
for the interval complex number as follows:

Definition 13 (Kulisch-Miranker’s order for interval com-
plex numbers):

ReCiC- Revista de Ciência de Computação 3



Fig. 3. Cartesian representation of the interval complex number Z = A+Bi

Fig. 4. The set ↑ A = {c ∈ C|A < c}

Fig. 5. The set ↓ B = {c ∈ C|c < B}

Fig. 6. The set [A,B] =↑ A∩ ↓ B

Let X,Y ∈ IC. X is less or equal to Y , denoted by X ≤ Y ,
if exists

N ∈ IC+ = {A+Bi|[0, 0] ≤KM A,B}
1 so that X +N = Y .

Proposition 3.1:
Let X,Y ∈ IC, where X = A + Bi and Y =

C + Di. X ≤ Y , if and only if, A ≤KM C and
B ≤KM D.

Proof:
⇒ Let X = A+ Bi and Y = C +Di ∈ IC so that X ≤ Y .
Then, by definition, there exists N = E + Fi ∈ IC+ so that,
X +N = Y .
So (A+Bi)+(E+Fi) = C+Di A+Bi+E+Fi = C+Di
A+E +Bi+Fi = C +Di (A+E) + (B+F )i = C +Di.
Therefore C = A+E and D = B+F . Since [0, 0] ≤KM E,F
then A ≤KM C and B ≤KM D.
⇐ Let A,B,C,D ∈ IR where A ≤KM C and B ≤KM D.
So, ∃E,F ∈ IR+ so that, C = A+E and D = B+F . Thus
making, X = A + Bi, Y = C + Di and N = E + Fi we

have that:

Y = C +Di
= (A+ E) + (B + F )i
= A+ E +Bi+ Fi
= A+Bi+ E + Fi
= X +N.

Therefore, X ≤ Y .

Definition 14 (Equality between interval complex numbers):
Let X = A+Bi and Y = C+Di where X,Y ∈ IC. Then

X = Y if A = C and B = D

Definition 15 (Comparability):
Let X,Y ∈ IC. X and Y are comparable if X ≤ Y or

Y ≤ X .

B. Algebraic Properties of the Interval Complex Numbers

In this subsection, some of the main algebraic prop-
erties about the complex intervals are defined: Let

X = [a, b] + [c, d]i, Y = [e, f ] + [g, h]i and
Z = [x, y] + [r, s]i where X,Y, Z ∈ IC .
• Commutativity of the Addition Operation:
X + Y = Y +X

Proof: X + Y = ([a,b] + [e,f]) + ([c,d] + [g,h])i
= [a + e,b + f] + [c + g,d + h]i
= [e + a,f + b] + [g + c,h + d]i

= Y + X

• Commutativity of the Multiplication Operation:
X × Y = Y ×X

1[r, s] ≤KM [t, u], if only if, r ≤ t and s ≤ u.
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Proof:
X × Y ==
= ([a, b]× [e, f ])− ([c, d]× [g, h])+
([a, b]× [g, h]) + ([c, d]× [e, f ])i
= ([min{a× e, a× f, b× e, b× f}+
max{a× e, a× f, b× e, b× f}
−[min{c× g, c× h, d× g, d× h,
max{c× g, c× h, d× g, d× h}])
+([min{a× g, a× h, b× g, b× h},
max{a× g, a× h, b× g, b× h}]
+min{c× e, c× f, d× e, d× f},
max{c× e, c× f, d× e, d× f}])i
= ([min{e× a, f × a, e× b, f × b}+
max{e× a, f × a, e× b, f × b}
−[min{g × c, h× c, g × d, h× d},
max{g × c, h× c, g × d, h× d}])+
([min{g × a, h× a, g × b, h× b},
max{g × a, h× a, g × b, h× b}]
+min{e× c, f × c, e× d, f × d},
max{e× c, f × c, e× d, f × d}])i
= ([min{a× e, a× f, b× e, b× f}+
max{a× e, a× f, b× e, b× f}
= ([e, f ]× [a, b])− ([g, h]× [c, d])+
([g, h]× [a, b]) + ([e, f ]×)[c, d]i
= Y ×X

• Associativity of the Addition Operation:
X + (Y + Z) = (X + Y ) + Z

Proof:
X + (Y + Z)
= [a, b] + [c, d]i+ ([e, f ] + [g, h]i+ [x, y] + [r, s]i)
= [a, b] + [c, d]i+ [e+ x, f + y] + [g + r, h+ s]i
= [a+ e+ x, b+ f + y] + [c+ g + r, d+ h+ s]i
= ([a+ e, b+ f ] + [c+ g, d+ h]i) + [x, y] + [r, s]i
= (X + Y ) + Z

Other demonstrations can be seen in Oliveira [16]:
• Neutral Element of the Addition:

∃ 0 = [0, 0] + [0, 0]i ∈ IC

so that X + 0 = 0 +X = X

• Neutral Element of the Multiplication:

∃ 1 = [1, 1] + [0, 0]i ∈ IC

so that X × 1 = 1×X = X

• Sub-Distributive Property:

X × (Y + Z) ⊆ (X × Y ) + (X × Z)

C. Classical Polar Representation of Interval Complex Num-
bers

Definition 16 (Moore’s interval complex distance):

Let dMc : IC× IC→ R the function is defined by:

dMc(A+Bi,C +Di) = dist(A,C) + dist(B,D),

where dist([r, s], [t, u]) = max{| r − t |, | s − u |}2. dMc is
called Moore’s complex distance.

Example 1:
Let X = [2, 5] + [2, 3]i and Y = [−2,−1] + [−1, 1]i then
dMc(X,Y ) =
= dist([2, 5], [−2,−1]) + dist([2, 3], [−1,−1])
=Max(|2− (−2)|, |5− (−1)|) +Max(|2− (−1)|, |3− (−1)|)
= 6 + 4 = 10

Theorem 3.2:
dMc is a metric

Proof: Let X = A+Bi, Y = C +Di,Z = F +Ei ∈ IC .
Then

•

dMc(X,X) =
= dist(A,A) + dist(B,B)
max{| A−A |, | A−A |}+max{| B −B |, | B −B |}
0 + 0
= 0

•

dMc(X,Y ) =
= dist(A,C) + dist(B,D)
= dist(C,A) + dist(D,B)
= dMc(Y,X)

• It has to be proved that

dMc(X,Z) ≤ dMc(X,Y ) + dMc(Y,Z)

dMc(X,Y ) + dMc(Y,Z) =
= dist(A,C) + dist(B,D) + dist(C,F ) + dist(D,E)
= dist(A,C) + dist(C,F ) + dist(B,D) + dist(D,E)

as dist(A,F ) and dist(B,E) are metric, then:
dist(A,F ) ≤ dist(A,C)+dist(C,F ) and dist(B,E) ≤
dist(B,D)+dist(D,E) thus dist(A,F )+dist(B,E) ≤
dist(A,C) + dist(C,F ) + dist(B,D) + dist(D,E) but

dMc(X,Z)
= dist(A,F ) + dist(B,E)
≤ dist(A,C) + dist(C,F ) + dist(B,D) + dist(D,E)
= dist(A,C) + dist(B,D) + dist(C,F ) + dist(D,E)
= dMc(X,Y ) + dMc(Y,Z)

thus dMc(X,Z) ≤ dMc(X,Y ) + dMc(Y,Z)

Other notions of distance:
Definition 17 (The interval distance between two interval

complex numbers):
Let X = A + Bi and Y = C + Di so that X and Y are

comparable. The interval distance between X and Y , denoted
by dI(X,Y ), is:

dI(X,Y ) =
√
(C −A)2 + (D −B)2.

2dist is known for the Moore’s distance [14] and is a metric.
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The construction of this definition basically came from Euclid-
ian geometry, which is shown below. Let X = A + Bi and
Y = C +Di; where A = [a1, a2], B = [b1, b2], C = [c1, c2]
and D = [d1, d2] ∈ IR; comparable complex intervals. The
interval distance between X and Y can be seen in figure 7:

Fig. 7. Distance between two interval complex numbers

Proposition 3.3:

Let the interval complex numbers
X = A+Bi and Y = C +Di, where A = [a1, a2],
B = [b1, b2], C = [c1, c2] and D = [d1, d2] ∈ IR, so that
X ≤ Y .

Then dI(X,Y ) = [dIinf(X,Y ), dIsup(X,Y )],where

dIinf(X,Y ) =
√

(c1 − a2)2 + (d1 − b2)2

dIsup(X,Y ) =
√
(c2 − a1)2 + (d2 − b1)2

Proof: if X ≤ Y then A ≤ C and B ≤ D. So,
dI(X,Y )

=
√

(C −A)2 + (D −B)2

=
√

([c1, c2]− [a1, a2])2 + ([d1, d2]− [b1, b2])2

=
√

[c1 − a2; c2 − a1]2 + [d1 − b2; d2 − b1]2
=
√

[(c1 − a2)2; (c2 − a1)2] + [(d1 − b2)2; (d2 − b1)2]
because X ≤KM Y

=
√

[(c1 − a2)2 + (d1 − b2)2; (c2 − a1)2 + (d2 − b1)2]
= [
√
(c1 − a2)2 + (d1 − b2)2;

√
(c2 − a1)2 + (d2 − b1)2]

= [dIinf (X,Y ), dIsup(X,Y )]

Thus, [dIinf(X,Y ), dIsup(X,Y )] is the interval where its
elements represent the minimum and maximum distances,
respectively.

Proposition 3.4:

Let the interval complex numbers X = A + Bi and
Y = C +Di, where A = [a1, a2], B = [b1, b2], C = [c1, c2]
and D = [d1, d2] ∈ IR. If X ≤ Y then dI(X,Y ) = dI(Y,X).

Proof:

dI(Y,X)

=
√

(A− C)2 + (B −D)2

=
√
([a1, a2]− [c1, c2])2 + ([b1, b2]− [d1, d2])2

=
√

[a1 − c2, a2 − c1]2 + [b1 − d2, b2 − d1]2
=
√
[(a2 − c1)2, (a1 − c2)2] + [(b2 − d1)2, (b1 − d2)2],

becauseX ≤ Y
=
√
[(c1 − a2)2; (c2 − a1)2] + [(d1 − b2)2; (d2 − b1)2]

=
√

[c1 − a2; c2 − a1]2 + [d1 − b2; d2 − b1]2
=
√
([c1, c2]− [a1, a2])2 + ([d1, d2]− [b1, b2])2

=
√

(C −A)2 + (D −B)2

= dI(X,Y ).

Corollary 3.5:
Let X,Y ∈ IC. If X and Y are comparable,

then dI(X,Y ) = [dIinf (X,Y ), dIsup(X,Y )].

Proof: Straightforward from propositions 3.3 and 3.4.

Proposition 3.6:
Let the interval complex number X = A + Bi, where

A = [a1, a2] and B = [b1, b2]. Thus dI(X,X) ⊇ [0, 0].

Proof:
dI(X,X)

=
√
(A−A)2 + (B −B)2

=
√
([a1, a2]− [a1, a2])2 + ([b1, b2]− [b1, b2])2

=
√

[a1 − a2, a2 − a1]2 + [b1 − b2, b2 − b1]2
=
√
[0, (a2 − a1)2] + [0, (b2 − b1)2]

for a1 ≤ a2 and b1 ≤ b2
=
√

[0, (a2 − a1)2 + (b2 − b1)2]
= [
√
0,
√
(a2 − a1)2 + (b2 − b1)2]

= [0,
√
(a2 − a1)2 + (b2 − b1)2]]

⊇ [0, 0]

Proposition 3.7:
Let the interval complex numbers X = A + Bi,

Y = C + Di and Z = E + Fi, where A = [a1, a2],
B = [b1, b2], C = [c1, c2], D = [d1, d2], E = [e1, e2] and
F = [f1, f2]. If X and Y , Y and Z and X and Z are
comparable, then dI(X,Y ) + dI(Y,Z) ≥ dI(X,Z).

Proof: We know that dI(X,Y ) =
[
√

(c1 − a2)2 + (d1 − b2)2;
√
(c2 − a1)2 + (d2 − b1)2],

dI(Y, Z) =
[
√
(e1 − c2)2 + (f1 − d2)2;

√
(e2 − c1)2 + (f2 − d1)2] and

dI(X,Z) =
[
√
(e1 − a2)2 + (f1 − b2)2;

√
(e2 − a1)2 + (f2 − b1)2]

dI(X,Y ) + dI(Y,Z) =

= [
√

(c1 − a2)2 + (d1 − b2)2;
√
(c2 − a1)2 + (d2 − b1)2]+

[
√
(e1 − c2)2 + (e2 − c1)2;

√
(f1 − d2)2 + (f2 − d1)2] =

= [
√

(c1 − a2)2 + (d1 − b2)2 +
√
(e1 − c2)2 + (e2 − c1)2;√

(c2 − a1)2 + (d2 − b1)2 +
√
(f1 − d2)2 + (f2 − d1)2]
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but
√

(e1 − a2)2 + (f1 − b2)2 is the distance between
the complex numbers x = a + bi and z = e + fi,√
(c1 − a2)2 + (d1 − b2)2 is the distance between the

complex numbers x = a + bi and y = c + di, and√
(e1 − c2)2 + (e2 − c1)2 is the distance between the

complex numbers y = c + di and z = e + fi. Because
the distance between the complex numbers is a metric,
then: dc(x, y) + dc(y, z) ≤ dc(x, z) and therefore√

(c1 − a2)2 + (d1 − b2)2 +
√

(e1 − c2)2 + (e2 − c1)2 ≥√
(e1 − a2)2 + (f1 − b2)2. Similarly, we can prove that:√
(c2 − a1)2 + (d2 − b1)2 +

√
(f1 − d2)2 + (f2 − d1)2

≥
√
(e2 − a1)2 + (f2 − b1)2. Thus,

dI(X,Y ) + dI(Y, Z)

= [
√
(c1 − a2)2 + (d1 − b2)2+√

(e1 − c2)2 + (e2 − c1)2;√
(c2 − a1)2 + (d2 − b1)2 +

√
(f1 − d2)2 + (f2 − d1)2]

≥ [
√
(e1 − a2)2 + (f1 − b2)2;

√
(e2 − a1)2 + (f2 − b1)2

= dI(X,Z).

Although dI is not a metric, in fact the range of dI is
not R and is a partial function, this satisfies, as seen in
propositions 3.4, 3.6 and 3.7, weak properties of metrics. Thus
it is reasonable to consider dI as a kind of ”distance” between
interval complex numbers.

Definition 18 (A partial interval metric):

Let the set A. A partial function dpi : A × A → IR is a
partial interval metric if it satisfies the following properties
∀X,Y, Z ∈ A

a. Partial symmetry: If dpi(X,Y ) is defined, then
dpi(X,Y ) = dpi(Y,X)

b. Sub-reflexivity: [0, 0] ⊆ dpi(X,X)
c. Partial triangle inequality: if dpi(X,Y ), dpi(Y, Z)

and dpi(X,Z) are defined, then: dpi(X,Z) ≤KM
dpi(X,Y ) + dpi(Y, Z)

Thus, by propositions 3.4, 3.6 and 3.7, dI is a partial interval
metric.

Proposition 3.8: If x ∈ X , y ∈ Y and X and Y are
comparable. Then dc(x, y) ∈ dI(X,Y )

Proof: It is trivial, as seen in figure 7.

Definition 19 (Module of an interval complex number based
on Moore’s distance):

Let X = A + Bi ∈ IC. The module of X , denoted by
|X| is the non-negative real number dMC(X, 0), that is the
Moore’s distance from X to the point [0, 0] + [0, 0]i.

Example 2:

Let X = [−3, 4] + [2, 3]i. Then,

|X| = dMC(X, [0, 0] + [0, 0]
=Max(| − 3− 0|, |2− 0|) +Max(|4− 0|, |3− 0|)
= 3 + 4
= 7

Definition 20 (Diameter of an interval complex number):
Let X = A + Bi ∈ IC. The diameter of X , denoted by
diam(X), is the non-negative real number√

diam(A)2 + diam(B)2

Definition 21 (Intersection of interval complex numbers):
Let X = A+Bi and Y = C +Di ∈ IC. The intersection

of X with Y is the interval.

X ∩ Y = (A ∩ C) + (B ∩ D)i

Intersection between two complex number intervals will only
exist if A ∩ C and B ∩D3 exist.

Proposition 3.9 (Monotonicity): Let X,Y, Z,W ∈ IC. If
X ⊆ Z and Y ⊆W , then X ∩ Y ⊆ Z ∩W

Proof: The proof can be found in [4] and [16].

D. Polar Representation for interval complex numbers

We are going to build a review in [4]: ”If we attempt to
express the set of complex numbers represented by an interval
complex number, A, in its polar form, we encounter certain
difficulties. Although the set of complex numbers determined
by the absolute value and the amplitude of A contains all the
complex number elements of the interval complex number A,
it will in general also contain a great many others. The shaded
portions of 8 represent additional complex numbers included
in a polar representation of a complex interval number.

Fig. 8. Original figure of the article [4] - A problem with the attempt of
polar representation of an interval complex number considered by Boche.

3[r, s] ∩ [t, u] exist, if only if, r ≤ t ≤ s or t ≤ r ≤ u.
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Such a polar representation could serve as the basis for
an alternative definition of interval complex numbers. We
could of course determine a rectangular region containing all
elements of such a polar representation. However, it is easy
to see that the only interval complex numbers for which the
polar and Cartesian representations are equal have one of the
three forms:

[a, a] + [b, b]i;

[c, d] + [0, 0]i

or

[0, 0] + [c, d]i

where 0 is not contained in the open interval (c,d). Observe
that in this text, written by Boche in [4], he does not
define a polar representation for complex interval numbers.
But, implicitly he considers the intervals [φ1, φ2] and [P1, P2]
showed in figure 9 as the element of a “polar representation”
of a complex interval number A + Bi. However, he himself
admitted that this representation is not adequate because there
are complex numbers a+bi so that the elements of their polar
representation are φ and P , and φ ∈ [φ1, φ2] and P ∈ [P1, P2],
nevertheless a 6∈ A or b 6∈ B.

Fig. 9. The attempt of polar representation of an interval complex number
considered by Boche.

Still, that is not the greatest problem with this “polar
representation” considered by Boche. The strongest problem
is that the angles are not related with the amplitude. It, as we
will see as follows, will not allow us to recover the cartesian
representation of an interval complex number (in a different
form of the three cases mentioned by him) from this polar
representation, and conversely, it will not allow us to recover
the elements of this polar representation from their cartesian
representation. In other words, the Euler’s identity will not be
satisfied.
In our view, an interval complex number [a1, a2] + [b1, b2]i
is a closed rectangle, can also be seen as the interval of
complex numbers [a1 + b1i, a2 + b2i], the vertices of the
rectangle are complex numbers a1+b1i, a1+b2i, a2+b1i and
a2+b2i. But, if we consider figure 9, as “polar representation”
of an interval complex number Z = A + Bi = [a1, a2] +
[b1, b2]i, and consider the Euler’s identity, we will have:

Z = Peφi

= [P1, P2]e
[φ1,φ2]i

= [P1, P2][e
φ1i, eφ2i] as P1, P2, e

φ1e eφ2 are positive,
then
= [P1e

φ1i, P2e
φ2i]

6= [a1 + b1i, a2 + b2i]
= A+Bi there is no relation between Pi and φi

Thus, we do not reconstruct the cartesian form from the polar
form. To solve this problem, we need to obtain angles which
relate with the amplitudes. We have two natural possibilities:
the first is to consider the angles φ1 and φ2 in figure 9 with
the amplitudes P ′1 =

√
a22 + b21 and P ′2 =

√
a21 + b22. Clearly,

φ1 and P ′1 are the elements of the polar representation of the
complex number a2 + b1i, and φ2 and P ′2 are the elements of
the polar representation of the complex number a1+ b2i. But,
this “polar representation” has the following problems:

1) There exist complex numbers a+ bi whose polar coor-
dinates are in the intervals [φ1, φ2] (or in [φ2, φ1]) and
[P ′1, P

′
2] (or in [P ′2, P

′
1]), but a 6∈ [a1, a2] or b 6∈ [b1, b2].

2) There exist complex numbers a+ bi whose polar repre-
sentation is not in the intervals [φ1, φ2] (or in [φ2, φ1])
and [P ′1, P

′
2] (or in [P ′2, P

′
1]), but a ∈ [a1, a2] and

b ∈ [b1, b2].
3) It does not satisfy Euler’s identity. Sup-

pose that it satisfies Euler’s identity, then
A+Bi =
= Peφi

= [P1, P2]e
[φ1,φ2]i

= [P1, P2][e
φ1i, eφ2i] as P1, P2, e

φ1e eφ2 are positive,
then
= [P1e

φ1i, P2e
φ2i]

= [a2 + b1i, a1 + b2i]
6= A+Bi there is no relation between Pi and φi

The second possibility is to consider P1 and P2 of figure
9 and the angles γ1 and γ2 showed in figure 10, where
P1 is the minimum module of the vertices of the closed
rectangle, P2 is the maximum module of the vertices of the
closed rectangle, showed in figure 11, and γ1 and γ2 are
angles built between P1 and P2 whose axis, respectively, i.e.
P1 = min{| a1+b1i |, | a1+b2i |, | a2+b1i |, | a2+b2i |} and
P2 = max{| a1 + b1i |, | a1 + b2i |, | a2 + b1i |, | a2 + b2i |}.
In figures 10 and 11, we consider the polar representations
of the points a1 + b1i and a2 + b2i in both cases. Clearly,
this polar representation will have the first of the problems
pointed above and the second, but only with respect to the
angle. Still, as we will prove below, this approach does not
have the last of the these problems, which from our point
view is the main of the three. By construction a1 = P1 cos γ1
and a2 = P2 cos γ2 where γ1, γ2 ∈ φ. This could be better
visualized by comparison between figures 9 and 10:

On the other hand, γ1 and γ2 do not form an interval,
which can be clearly seen in figure 11 which γ1 ≤ γ2 does
not always happen. However, one can consider the following
interval: γ = [min{γ1, γ2},max{γ1, γ2}] By the Euclidian
metric: P1 =

√
a21 + b21 e P2 =

√
a22 + b22 it can also be

seen that P1 cos γ 1 = a1, P2 cos γ 2 = a2, P1senγ 1 = b1 e
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Fig. 10. Polar representation of a complex number

Fig. 11. Polar representation in which P1 is in the third quadrant

P2senγ 2 = b2. so senγ 1

cos γ 1

b1
a1

= tan γ 1 then

γ 1 = arctan
(
b1
a1

)
in the same way senγ2

cos γ 2

b2
a2

=

tan γ2 then γ2 = arctan
(
b2
a2

)
.

Theorem 3.10 (Polar representation of an interval complex
number):

Let Z ∈ IC and the polar coordinates P1, P2, module of Z
and γ1, γ2 the polar angle, then the polar representation of Z
is:

Z = [P1e
γ1i, P2e

γ2i]

Proof:
Let Z = A+Bi where A = [a1, a2] and B = [b1, b2] , then:
Making Z from Cartesian form to polar form:
⇒ Z = [a1 + a1] + [b1, b2]i

⇒ Z = [a1 + b1i, a2 + b2i]

⇒ Z = [P1e
γ1i, P2e

γ2i]

Remaking Z from polar form to Cartesian form:

⇒ Z = [P1e
γ1i, P2e

γ2i]

⇒ Z = [P1 cos(γ1) + iP1sen(γ1), P2 cos(γ2) + iP2sen(γ2)]
⇒ Z = [P1 cos(γ1), P2 cos(γ2)] + [P1sen(γ1), P2sen(γ2)]i
⇒ Z = A+Bi

This way, the relation in the polar form in our point of
view will be about the extremes and not in the interval. It
also will not be about φ, as it was thought previously, but
about γ1 and γ2. Thus, Euler’s Identity can be extended to the
interval.

1) Euler’s Interval Identity:
Theorem 3.11 (Euler’s interval identity):
Let Z ∈ IC, where Z = A + Bi is the Cartesian repre-

sentation and Z = [P1e
γ1i, P2e

γ2i] is the polar representation,
so:

eγ1i = cos γ1 + sin γ1i

e
eγ2i = cos γ2 + sin γ2i

Proof:
Z = A+Bi

= [a1, a2] + [b1, b2]i
= [a1 + b1i, a2 + b2i]

but a1 + b1i, a2 + b2i ∈ C
so a1 + b1i = P1e

γ1i = cos γ1 + sin γ1i
and a2 + b2i = P2e

γ2i = cos γ2 + sin γ2i
so [eγ1i, eγ2i] = [cos γ1 + sin γ1i, cos γ2 + sin γ2i]

This is trivial because, since the limits of the interval are
complex numbers, thus they can be worked out as shown
previously in the section “Review about Complex Numbers”.

Example 3 (Euler’s interval identity):
Let the complex interval Z = A+Bi = [2, 5] + [2, 3]i

P1 =
√
22 + 22

=
√
8

= 2.828427

P2 =
√
52 + 32

=
√
34

= 5.830952

γ′1 = arctan
(
2
2

)
= 0.785398

γ′2 = arctan
(
3
5

)
= 0.5404195

Z =
[
P1e

γ1i, P2e
γ2i
]

=
[
2.828427e0.5404195i, 5.830952e0.785398i

]
= [2.828427, 5.830952]e[0.5404195,0.785398]i

Remaking Z in Cartesian form:

= [2.828427 cos(0.785398), 5.830952 cos(0.5404195)]+
[2.828427sen(0.785398), 5.830952sen(0.5404195)] i

= [2, 5] + [2, 3]i

So, we recovered exactly the cartesian representation of Z
from their polar representation, which is an excellent result.
On the other hand, one needed to analyze what happens when
the calculation is carried out using the interval γ:

Let P = [2.828427, 5.830952] and
γ = [0.5404195, 0.785398].
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Then Z = [2.828427, 5.830952]e[0.5404195,0.785398]i

P cos γ = [2.828427, 5.830952] cos [0.5404195, 0.785398]
= [2.828427, 5.830952][0.7071069, 0.8574929]
= [2.000000, 5.000000]
= A

P sin γ = [2.828427, 5.830952] sin [0.5404195, 0.785398]
= [2.828427, 5.830952][0.5144958, 0.7071067]
= [1.4552137, 4.1231050]
⊇ B

In this case, the cartesian representation obtained from the
polar representation of Z is exactly the same for A but not for
B, nevertheless the value obtained for B approximate B, in
the sense that it contains B. This occurred because, at present,
the interval γ is being used instead of the extremities as earlier
and thus resulted in obtaining better results.

Example 4:
Let the complex interval Z = [−2, 2] + [−2, 3]i

P1 =
√

(−2)2 + (−2)2
=
√
8

= 2.828427

P2 =
√
(2)2 + 32

=
√
13

= 3.605551

γ′1 = π + arctan
(
−2
−2

)
= π + 0.785398
= 3.926991

γ′2 = arctan
(
3
2

)
= 0.982794

Z =
[
P1e

γ1i, P2e
γ2i
]

=
[
2.828427e0.982794i, 3.605551e3.926991i

]
= [2.828427, 3.605551]e[0.982794,3.926991]i

Remake Z in Cartesian form:

Z = [2.828427 cos(3.926991), 3.605551 cos(0.982794)]+
[2.828427sen(3.926991), 3.605551sen(0.982794)] i

= [−2, 2] + [−2, 3]i
Thus, excellent results were obtained. On the other hand, we

need to analyze what happens if we calculate using the interval
γ: let P = [2.828427, 3.605551], γ = [0.982794, 3.926991]

then Z = [2.828427, 3.605551]e[0.982794,3.926991]i

P cos γ = [2.828427, 3.605551] cos [0.982794, 3.926991]
= [2.828427, 3.605551][−0.707106, 0.554700]
= [−2.549507, 2.000000]
⊇ A

P sin γ = [2.828427, 3.605551] sin [0.982794, 3.926991]
= [2.828427, 5.830952][−0.707106, 1]
= [−4.123106, 5.830952]
⊇ B

Again, as can be seen, this result is good, but it is not perfect

because the values found for A and B are not exact, but it
approaches A and B.

IV. CONCLUSION

In the present work, important definitions were introduced
(definitions and theorems 9, 10, 3.1, 13, 16, 17, 18, 19
and 3.11) to the theory of complex variables and complex
interval variables by defining basic complex elements under
the knowledge of interval in defining a polar representation and
presenting Euler’s identity for the interval case. Using these
concepts was important to the field of pure mathematics where
one studies the mathematical interval, as well as in several
other applications in the fields of science and engineering
where the information about complex numbers is used and
those can be treated as under numerical intervals, such as
computational geometry, fazorial analysis, digital processing
of images and signals, etc. These new aspects of intervals
associated with practical problems, which use complex math-
ematics, until now being worked on punctual forms will offer
support to the solutions presented and they will treat the
solution within a clear margin as well [1]. We believe that the
present work contributed to the enhancement of mathematical
knowledge, which deals with the Interval Theory.
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