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Abstract- In this paper, given two quan-

tales non necessary with identity. We inves-

tigate the ideals, prime ideals, radical ide-

als, primary ideals, and maximal ideals of the

direct product. Unlike the case where those

quantale are unital, an ideal (or primary ideal,

or maximal ideal) of the their direct product

need not be a sub-product (Lemma 3.1) of ide-

als. The Theorem 4.2 extends the result on [3]
for the product of two quantales.
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1 Introduction

The notion of quantale, which designates a complete
lattice equipped with an associative binary multipli-
cation distributing over arbitrary joins, appears in
various areas of mathematics-in quantaloid theory, in
non classical logic as completion of the Lindebaum
algebra, and in different representations of the spec-
trum of a C

⇤ algebra as many-valued and non com-
mutative topologies. To put it briefly, its importance
is no longer to be demonstrated. Quantales are ring-
like structures in that they share with rings the com-
mon fact that while as rings are semi groups in the
tensor category of abelian groups, so quantales are
semi groups in the tensor category of sup-lattices. In
2008 Anderson and Kintsinger [1] characterized prime
ideals, radical ideals, primary ideals and maximal ide-
als of R ⇥ S where R and S are commutative rings.
In 2009, D. Anderson and V. Camillo [2] given ex-
position of Goursat’s lemma which describes the sub
groups of a direct product of two groups. A ring ver-
sion giving the sub rings and ideals of a direct product
of two rings is also given. In this paper we prove some
results which are proved by Anderson and Kintsinger
in reference [1]. Let us recall some definitions that
exist in the literature.

2 BASIC ON QUANTALES
Definition 2.1. A quantale is a join complete lattice
Q with an associative binary operation � : Q⇥Q !
Q, called its multiplication, satisfying a distribu-
tive property such that for all elements x and y

i

of
Q, for all i in a set of indexed family I, we have
the following identities: x � (

W
y

i

) =
W
(x � y

i

) and
(
W
y

i

) � x =
W
(y

i

� x).
A quantale is unital if it has an identity element e

for its multiplication: x � e = x = e �x, for all x in Q.

In this case, the quantale is naturally a monoid with
respect to its multiplication.

The largest element of Q is denoted by > and
the smallest by ?. An element a is called left-sided if
> � a  a, and it called right sided if a � >  a and
two-sided if it is left-sided and right-sided. A commu-
tative quantale is a quantale whose multiplication is
commutative.

Given an ordered set (Q,) the downward clo-
sure of an element x, denoted by # x is defined by:
# x = {l 2 Q : l  x}. If Q1 and Q2 are two quan-
tales, then the binary product Q1 ⇥Q2 is a quantale
where the supremum and the multiplication are de-
fined component by component.

Definition 2.2. [3] A subset I of a quantale Q is
called a finitary left ideal of the quantale Q provided
that the following conditions are satisfy.

1. For all elements a and b of I, the supremum
a _ b is an element of I.

2. For all element x of I and y an element of Q

where y  x, we have y is an element of I.

3. For all element x of I and all element q of Q,
we have q � x is an element of I.

Right ideal is defined in a similar way, replace 3) by
3’)

3’ : For all element x of I and all element q of Q,
we have x � q is an element of I.

The ideal I is a two-sided ideal or, simply, an ideal if
it is both a left and a right ideal.
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The definition of ideal that we use in this paper is
that used by Bergamaschi and Santiago (see [3]) and
the paper of Shaoul Liang (see [7]). In all our work,
ideal finitaire will be replaced by ideal itself.

As we work only finitaries ideals, they will simply
be called ideals, left ideals or right ideals.

For all quantales Q1 and Q2, non necessary with
identity, we investigate the ideals, prime ideals, pri-
mary ideals, and maximal ideals of the quantale
Q1 ⇥ Q2. Unlike the case where the quantales Q1

and Q2 have are unitary, an ideal (or primary ideal,
or maximal ideal) of Q1 ⇥ Q2 need not be a ’sub
product’ I ⇥J of ideals. We show that for a quantale
Q1, for each commutative quantale Q2 every ideal (or
primary ideal, or maximal ideal) is a sub-product if
and only if Q is an e-quantale (that is, for q 2 Q,
there exists an element e

q

2 Q satisfy the identity
e

q

� q = q).
An arbitrary intersection of left ideals (resp right

ideals, resp. ideal) of a quantale is again a left ideal
(resp. right ideal, resp. ideal).

It should observed that in this case, > �
W
S is a

left-sided element where S is a subset of a quantale
Q. Thus the following result.

Lemma 2.3. For any left-sided element x of a quan-
tale Q, the down-set # x is an ideal with biggest ele-
ment x.

Proof. Let x be an left-sided element of Q; the sub-
set # x is closed under binary supremum and it is
closed immediate. Now if q and l are elements of Q
and l  x, then q � l  q � x  >� x  x. The last in-
equality comes from that x is left-sided element.

Given a subset S of a quantale Q, the least left
ideal containing S, which we denote by hSi

l

is called
the left ideal generated by S. In particular the left
ideal generated by a empty set is {?} where ? is the
least element of Q. We also denote by hSi

r

(resp. hSi)
the right ideal (resp. ideal ) generated by S.

If K and J are two sub-sets of a quantale Q, we
define the subset K � J by the set K � J := {k � j :
k 2 K, j 2 J} and the subset K

W
J by the following

set: K
W
J := {k

W
j : k 2 K, j 2 J}.

The next lemma is proved by Qingjun Luo and
Guojun Wang.

Lemma 2.4. [6] For any quantale Q the following
properties hold.

(i) For any subset S of Q; the ideal generated by
S is given by the set hSi = {x 2 Q : x 

W
n

i=1 ai for
some positive integer n, a

i

2 S [ (Q � S) [ (S �Q) [
(Q � S � Q)}. In particular, for each element a of Q,
hai = {x 2 Q : x 

W
n

i=1 ai for all positive integer n,
a

i

2 {a} [ (Q � a) [ (a �Q) [ (Q � a �Q)}.

(ii) The ideals of Q are precisely the sets hai with
a be an element of Q satisfies

W
n

i=1 ai  a for some
positive integer n, a

i

2 {a}[(Q�a)[(a�Q)[(Q�a�Q).

The proof of the next lemma is similar, we state
it.

Lemma 2.5. Let S be a non empty subset of a quan-
tale Q.
(i) The left ideal of Q generated by S is given by
hSi

l

= {x 2 Q : x 
W

n

i=1 ai for some positive integer
n, a

i

2 S [ (Q � S) [ (Q � S �Q)}.
(ii) The right ideal of Q generated by S is given by
hSi

r

= {x 2 Q : x 
W

n

i=1 ai for some positive integer
n, a

i

2 S [ (S �Q) [ (Q � S �Q)}.

Lemma 2.6. [3] For all element a of a quantale Q,
the following inclusion hols: hai � Q ✓ hai. If there
exists an unit e in Q, then hai �Q = hai.

Definition 2.7. • A proper ideal M of a quan-
tale Q is said to be maximal if for each ideal K
of Q such that the inclusions M ✓ K ( Q are
holds, we have the equality K = M .

• An ideal J of a quantale Q is said to be com-
pletely prime (respectively completely semi-
prime) if for each elements x and y of Q, the
element x � y is in J implies that x is and ele-
ment of J or y is an element of J (respectively
the element x�x is an element of J implies that
x is an element of J).

• An ideal P in a quantale Q is said to be prime
(respectively semi-prime) if P for each Ideals K
and J of Q, the ideal K � J satisfy K � J ✓ P

implies that K is a subset of P or J is a subset
of P (respectively the ideal K � K is a subset
of P implies that K is a subset of P ).

It is proved in reference [3] that every completely
prime ideal of a quantale Q is prime, and if Q is com-
mutative quantale, we have the equivalence of the two
notions.

If Q1 and Q2 are two quantales, a morphism from
Q1 to Q2 is an arrow f defined from Q1 to Q2 such
that f(x � y) = f(x) � f(y) and f(

W
x

i

) =
W

f(x
i

),
for all elements x, y and x

i

of Q, where i is element of
an indexed family I. The collection of quantales and
morphisms of quantales form a category, denoted by
Quant.

For example, if R is a ring, let Id(R) the collec-
tion of all left ideals of R; Id(R) has a structure of
quantale where the operations

W
and multiplication

� are defined as follows.
W
K

i

= h[K
i

i, the ideal gen-
erated by the union of the family {K

i

: i 2 I} and
K � J = {k.j, where k 2 K and j 2 J}. Let Q3 the
set of three elements {0, a, 1} with order 0  a  1;

2
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Q is a quantale where the multiplication is given by
the following table.

� 0 a 1
0 0 0 0
a 0 a a
1 0 a 1

Example 2.8. Let M = (M, ⇤, e) be a monoid; the
power set P(M) has the structure of quantale where
the suprema is given by the union and the multipli-
cation is defined as follows: for each subsets A and B

of M , A � B is the set given by A � B = {a ⇤ b : a 2
A, b 2 B}. The identity in this quantale is the subset
{e}. It is clear that if the monoid M is commutative,
then again the quantale (P(M),✓, �) is again com-
mutative. In reference [4] the author call the quan-
tale (P(M),✓, �)the relational quantale. It is proved
in reference [4] that each quantale is isomorphic to a
relational quantale.

3 Ideals of product of two quan-
tales

In a quantale Q, it is away that for all element q of Q,
we have q �? = ?� q = ?; the least element ? is the
empty suprema, so q � ? = q �

W
; =

W
x2;(q � x) =W

; = ? We next turn to direct product of quantales
and their ideals. If Q1 and Q2 are quantales, and
I1 and I2 are ideals of Q1 and Q2 respectively, then
I1 ⇥ I2 is an ideal of the quantale Q1 ⇥ Q2. Similar
statements hold for right and left ideal ideals. If Q1

and Q2 have an identity, then every ideal (right, left
or two-sided) has this form. This is our next lemma.

Lemma 3.1. For any unital quantales Q1 and Q2,
every left ideal of the quantale Q1 ⇥ Q2 is a sub-
product of left ideals, that is the ideal of Q1⇥Q2 has
the form K1 ⇥K2, where K

i

is a left ideal of Q
i

, for
i = 1 or i = 2.

Proof. First, if K

i

is an ideal of Q

i

, then K1 ⇥ K2

is clearly an ideal of Q1 ⇥Q2. Secondly, let K be an
ideal of the quantale Q1⇥Q2; we will prove that K is
a sub-product. Put K1 = {a 2 Q1 : (a,?) 2 K} and
K2 = {b 2 Q2 : (?, b) 2 K}. We have (?,?) 2 K,
then ? 2 K1. Now, let a 2 K1 and a

0 2 Q1; We have
(a0,?) � (a,?) = (a0 � a,?) is an element of K, be-
cause (a,?) 2 K and K is an ideal of Q1 ⇥ Q2. So
a � a0 is an element of K1. Let a1, and a2 be two ele-
ments of K1; (ai,?) are in K for i = 1, 2. Therefore
the equality (a1,?)_ (a2,?) = (a1_a2,?) holds and
we conclude that (a1,?)_ (a2,?) is an element of K;
this implies that a1_a2 is an element of K1. Let x1 be
an element of K1 and let y1 be an element of Q1 with

respect y1  x1. The element (x1,?) is in K; so we
have (y1,?)  (x1,?) and then (y1,?) is an element
of K; so y1 is an element of K1 and we conclude that
K1 is an ideal; similarly, K2 is an ideal of Q2. To fin-
ish this proof, it is let to check that is K = K1 ⇥K2.
Let (a, b) an element of K; then (a,?) = (e,?)�(a, b)
is an element of K and a is an element of K1. Similar
we prove that b is an element of K2. Now, for all ele-
ment (a, b) of the set K1 ⇥K2, (a,?) and (?, b) are
elements of K1 and K2 respectively; we have the fol-
lowing equality: (a, b) = (e,?)�(a,?)_(?, e)�(?, b),
and we conclude that (a, b) is an element of K. We
conclude that K = K1 ⇥K2.

Proposition 3.2. Let Q1 and Q2 be two quantales
with least elements denoted by ?; the following con-
ditions are equivalent .

1. Every ideal K of Q1 ⇥Q2 is a sub-product.

2. For each element a of Q1 and each element b of
Q2, we have the equality h(a, b)i = hai ⇥ hbi.

3. For each element a of Q1 and each element b of
Q2, the element (a,?), (?, b) is an element of
h(a, b)i.

Proof. (1) ) (2). Assume that every ideal of the
quantale Q1 ⇥ Q2 is a sub-product; let a be an el-
ement of Q1 and b be an element of Q2. We want
to show the equality h(a, b)i = hai ⇥ hbi. The sub-
set h(a, b)i is an ideal of the quantale Q1 ⇥Q2, then
by hypothesis it is the form K1 ⇥ K2 where K

i

is
an ideal of Q

i

, i = 1, 2; the pair (a, b) is an element
of the set K1 ⇥ K2, then a is an element of K1 and
b is an element of K2, this implies the following in-
clusions hai ✓ K1 and hbi ✓ K2. So the inclusion
hai ⇥ hbi ✓ h(a, b)i hols. The pair (a, b) is an element
of hai ⇥ hbi and hai ⇥ hbi is an ideal of Q1 ⇥Q2, then
h(a, b)i ✓ hai ⇥ hbi, therefore hai ⇥ hbi = h(a, b)i.
(2) ) (3). Assume that for each element a of Q1 and b

an element of Q2, the pair is write h(a, b)i = hai⇥hbi.
Let a be an element of Q1 and b be an element of Q2;
The pair (a, b) is an element of h(a, b)i = hai ⇥ hbi,
so (a,?) is an element of hai⇥ hbi; therefore the pair
(a,?) is an element of h(a, b)i.
(3) ) (1). Assume that for each element a of the
quantale Q1 and each element b of the quantale Q2,
the pairs (a,?) and (?, b) are elements of h(a, b)i.
Let K be an ideal of the quantale Q1 ⇥ Q2; put
K1 := {a 2 Q1 : (a,?) 2 K} and K2 := {b 2 Q2 :
(?, b) 2 K}. Let a be an element of K1 and a

0 be
an element of Q1 such that a

0  a; the pair (a,?) is
an element of K and (a0,?)  (a,?), then the pair
(a0,?) is an element of K and a

0 is an element of K1.
For all pair (a, b) of K1 ⇥K2, a is an element of K1

3
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and b is an element of K2, then the pairs (a,?) and
(?, b) are elements of K and the following equality
hols: (a, b) = (a,?) _ (?, b) and conclude that the
pair (a, b) is an element of K; this prove that the set
K1 ⇥K2 is a subset of K. To finish, let (a, b) be an
element of K; the pairs (a,?) and (?, b) are elements
of h(a, b)i, so a is element of K1 and b is element of
K2 and we conclude that the equality K = K1 ⇥K2

holds.

Of course Lemma 3.1 may fail if Q1 and Q2 do not
have an identity. For example, we next give a partial
converse to Lemma 3.1. Let us call a quantale a left
e-quantale if for each element q of Q there exists an
element e

q

of Q depending of q with e

q

� q = q. Note
that Q is a left e-quantale if and only if Q � I = I for
each left ideal I of Q.

Theorem 3.3. For a quantale Q1, with top element
> and bottom element ?, satisfies for all elements a

and b of Q1, a  b � a implies that a = b � a. The
following conditions are equivalent in Q1.
(1) The quantale Q is a left e-quantale (that is, for
each element q of Q, there exists an element e

q

of Q1

with e

q

� q = q).
(2) For each unital quantale Q2, each left ideal of
Q1 ⇥Q2 is a sub-product.
(3) For all natural number n such that n � 2, each left
ideal of the quantale Q

n

1 has the form K1 ⇥ ... ⇥K

n

where K

i

is an left ideal of Q1 for all i element of
{1, 2, ..., n}.
(4) Every left ideal of the quantale Q1 ⇥Q1 is a sub-
product.

Proof. (1) ) (2). Assume that Q1 is an e-quantale
and let Q2 be an unital unital quantale denoted e.
Let K be an ideal of Q1 ⇥ Q2. Put K1 = {a 2 Q1 :
(a,?) 2 K} and K2 = {b 2 Q2 : (?, b) 2 K}; For
each pair (a, b) of K1⇥K2, a is an element of K1 and
b is an element K2, so (a,?) is an element of K and
(?, b) is an element of K; (a, b) = (a,?)_ (?, b) is an
element of K and K1⇥K2 ✓ K. Now let (a, b) be el-
ement of K; choose e

a

, element of Q1 with e

a

�a = a.
Then (a,?) = (e

a

,?) � (a, b) is an element of K; so
a is an element of K1. And (?, b) = (?, e) � (a, b) is
an element of K; so b is an element of K2.
(2) ) (3). By induction on n, if n = 2, apply (2) with
Q2 = Q1. Assume the result for n � 1 and take Q

0

given by Q2 = Q

n�1
1 and conclude.

(3) ) (4): clear.
(4) ) (1). Let q be an element of Q, then the pair
(q, q) is an element of Q1⇥Q1 and the pair (q, q) is an
element of h(q, q)i = hqi⇥hqi. So the pair (q,?) is an
element of hqi⇥hqi (use 3.2); there exists a finite fam-
ily {a

i

: 1  i  n} of elements of Q� q[Q� q, where
n is a positive entire number, such that q 

W
n

i=1 ai;

so q  (
W

n

i=1 bi) � q. We conclude that q = e

q

� q,
where e

q

=
W

n

i=1 bi.

Example 3.4. If Q1 is a idempotent quantale (That
is x � x = x for all element x of Q1), then Q is an e-
quantale. Every left ideal of Q1⇥Q2 is a sub-product,
for all unital quantale Q2.
Example 3.5. Let Q = {0, a, b, c, 1} with the order
, given by 0  a  c  1 and 0  b  c  1 is a
quantale where their multiplication is giving by the
following table.

� 0 a b c 1
0 0 0 0 0 0
a 0 a 0 a a
b 0 0 b b b
c 0 a b c c
1 1 a b c 1

We see that Q1 is an e-quantale, and any (left,
right, two-sided) ideal of Q1⇥Q2, where Q2 is a com-
mutative quantale is a sub-product.

We leave it to the reader to define a right e-
quantale and to state versions of theorem 3.3 for right
ideals and two-sided ideals. Note that if {Q

i

: i 2 I}
is any nonempty family of left e-quantales, then their
direct product

Q
i2I

Q

i

with coordinate-wise opera-
tions is again a left e-quantale. In particular, an infi-
nite direct product of quantales each having an iden-
tity is both a left and right e-quantale, but does not
have an identity.

4 Primeness
Lemma 4.1. [3] For an ideal P in a quantale Q with
unity, the following statements are equivalent:
(1) the ideal P is prime.
(2) For any elements a and b of Q, the inclusion
hai � hbi ✓ P holds implies hai ✓ P or hbi ✓ P .
(3) For any elements a and b of Q, the inclusion
a � Q � b ✓ P holds implies that a is an element
of P or b is an element of P .
Theorem 4.2. Let Q1 and Q2 be quantales. Then
an ideal P of the quantale Q1 ⇥ Q2 is prime if and
only if P has the form P1 ⇥ Q2 where P1 is a prime
ideal of Q1 or Q1 ⇥ P2 where P2 is a prime ideal of
Q2.
Proof. )) Assume that P1 is a prime ideal of Q1.
Let I and J be two ideals of Q1 ⇥ Q2 such that
I � J ✓ P1 ⇥ Q2; I and J are ideals of the quan-
tale Q1⇥Q2, then I and J have the form I = I1⇥ I2

and J = J1 ⇥J2 where I

k

and J

k

are ideals of Q
k

for
k = 1, 2. The following inclusions are hold: I � J =
(I1 ⇥ I2) � (J1 ⇥ J2) = (I1 � J1)⇥ (I2 � J2) ✓ P1 ⇥Q2;

4
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so I1 �J1 ✓ P1 and P1 is a prime ideal. So I1 ✓ P1 or
J1 ✓ P1 and deduce that I ✓ P1⇥Q2 or J ✓ P1⇥Q2

and conclude that P1⇥Q2 is a prime ideal. Similarly
we prove that if P2 is a prime ideal of Q2, then Q1⇥P2

is a prime ideal of Q1 ⇥Q2. Conversely, Assume that
P is a prime ideal of Q1 ⇥ Q2. Denoted by 0 = {?}
the least ideal of Q1 or Q2. Now (0⇥Q2)�(Q⇥0) ✓ P,
so either 0 ⇥ Q2 ✓ P or Q1 ⇥ 0 ✓ P. Assume that
Q⇥ 0 ✓ P. It follows from 3.2 that P = Q1 ⇥ P2 for
some ideal P2 of Q2. It is easily checked that P2 must
be prime. The case where 0⇥Q2 ✓ P is similar.

Similarly we prove the following theorem.

Theorem 4.3. Let Q1 and Q2 be quantales. Then
an ideal P of Q1 ⇥Q2 is semi-prime if and only if P
has the form P1 ⇥Q2 where P1 is a semi-prime ideal
of Q1 or Q1 ⇥ P2 where P2 is a semi-prime ideal of
Q2.

Lemma 4.4. For a commutative quantale Q1, the
following conditions are equivalent.

1. For each commutative quantale P , every max-
imal ideal of Q1 ⇥ P has the form M ⇥ P or
Q1 ⇥ N , where M (respectively N) is a maxi-
mal ideal of Q1 (respectively P ).

2. Every maximal ideal of Q1 ⇥ Q1 has the form
M ⇥Q1 or Q1⇥M where M is a maximal ideal
of Q1.

3. Every maximal ideal of Q1 ⇥ Q1 is a sub-
product.

4. For each commutative quantale P , every maxi-
mal ideal of Q1 ⇥ P is a sub-product.

Proof. The implication 1 ) 2 ) 3 ) 4 are clear.
(4) ) (1). Let P a commutative quantale and let M
be a maximal ideal of Q1⇥P ; (4) implies that M is a
sub-product, then M = M ⇥N , where M is an ideal
of Q1 and an N is an ideal of P . We have the inclusion
M⇥N ✓ M⇥P and the inclusion M⇥N ✓ Q1⇥N ,
so M has the form M ⇥ P , where M is a maximal
ideal of Q1 or M has the form Q1 ⇥N , where N is a
maximal ideal of P .

Proposition 4.5. For a commutative unital quan-
tale Q1, the following conditions are equivalent.

1. Every maximal ideal of Q1 is prime.

2. For each commutative quantale Q2, every max-
imal ideal of Q1 ⇥Q2 is prime.

3. Every maximal ideal of Q1 ⇥Q1 is prime.

Proof. (1) ) (2). Let M a maximal ideal of Q1⇥Q2;
used 3.2 and conclude that M has the form M ⇥Q2

where M is a maximal ideal of Q1; so M maximal
and used (1) and conclude that M is prime.
(2) ) (3) is clear.
(3 ) (1). Let M be a maximal ideal of Q1; then 3.3
implies that M ⇥Q1 is a maximal ideal of Q1 ⇥Q1;
(3) implies that M ⇥Q2 is a prime ideal of Q1 ⇥Q1.
Lemma 3.3 implies that M is prime.

Definition 4.6. For any commutative unitary quan-
tale Q an I an ideal of Q, the radical of I is the the
denoted by Rad(I) and defined by Rad(I) =: {a 2
Q : an 2 I for some n 2 N}. Note that for an element
a of Q, an = a � a · · · � a. An ideal I of Q is said to
be radical if Rad(I) = I.

Proposition 4.7. Let Q be a unitary commutative
quantale and I be an ideal of Q; the following results
are hold.
(1) The subset Rad(I) is an ideal of Q contain I.
(2) If I is a prime ideal, then I is radical.
(3) The correspondence Rad(�) defined on the set of
all ideals Q is an idempotent endofunctor.
(4) The correspondence Rad(�) is a closure operator.
(5) If I is a primary ideal, then the radical of I is a
prime ideal of Q.
(6) The radical of I is the intersection of all prime
ideals of Q containing I.

Proof. (1) It is easy with n = 1 to see that I is a sub-
set of Rad(I). Let x and y be elements of Rad(I), q
be an element of Q. There exists the positive integer
n and m such that x

n and y

m are elements of I. We
have (q � x)n = q

n � x

n is an element of I, so q � x

is an element of Rad(I). If q is such that q  x, so
q

n  x

n an conclude that q is an element of Rad(I).
To finish, see that x

n+m and y

n+m are elements of I
and x

n+m_y

n+m is an element of I. We remark that
(x_y)n+m = x

n+m_y

n+m_(x�y)n+m is an element
of I and conclude that x_ y is an element of Rad(I).
(2) Assume that I is a prime ideal. Let x be an ele-
ment of Rad(I) and n be a positive integer number
such that xn is an element of I. We have xn = x�xn�1

is an element of I. By induction on n, we prove that
x is an element of I because I is prime.
(3) Let J be an ideal of Q such that I ✓ J ; let x be an
element of Rad(I) and n be a positive integer number
such that x

n is an element of I, so x

n is an element
of J and conclude that x is an element of Rad(J).
Now, let a be an element of Rad(Rad(I)); there is a
positive integer number m such that am is an element
of Rad(I); there is a positive integer number n such
(am)n is in I; (am)n = a

nm is in I implies that a is
an element of Rad(I), so Rad(Rad(I))=Rad(I).
(4) Follows by (1) and (3).
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(5) Let a and b be two elements of Q such that a�b is
an element of Rad(I); so there is a positive number n
such that (a�b)n = a

n�bn is an element of I, so there
is a positive integer m such that a

nm is an element
of I or b

nm is an element of I. We say that a or b is
an element of Rad(I).
(6) Let P be a prime ideal of Q containing I; If x

is an element of Rad(I) and n be an entire number
such that x

n is an element of I, the element x

n is in
P and conclude that x is an element of P .

It is not hard to show the following proposition.

Proposition 4.8. For each ideals I and J of a com-
mutative quantale Q, Rad(I \ J) =Rad(I)\ Rad(J).

Theorem 4.9. Let P and Q be commutative quan-
tales. The radical ideals of P ⇥Q have the form I⇥J

where I is a radical ideal of P and J is a radical ideal
of Q.

Proof. Let K be a radical ideal of P ⇥ Q. We may
assume that K is a sub-product of the form I ⇥ J

where I is an ideal of P and J an ideal of Q. So I

is an intersection of prime ideals, each of which is a
sub-product. So K = I ⇥ J is a sub-product where I

and J is either the whole quantale or an intersection
of prime ideals. In either case I and J is a radical
ideal.

Our next goal is to characterize the commutative
quantales Q with the property that for each commu-
tative quantale P , every primary ideal of is a sub-
product. We need the following lemma.

Lemma 4.10. Let P and Q be commutative quan-
tales.
(1) If A is an ideal with A 6= Q and Rad(A) = Q,
then A is primary.
(2) If K is a primary ideal of P ⇥Q with Rad(K) 6=
P ⇥Q, then either K = I1 ⇥Q where I1 is a primary
ideal of P or K = P ⇥ I2 where I2 is a primary ideal
of Q.

Proof. (1) Assume that a and b are elements of Q

such that a � b is an element of A. Then Rad(A) = Q

gives b

n is an element of A for some n � 1 regard-
less of whether a is an element of A or not. (2)
Now Rad(K) is a prime ideal of P ⇥ Q, so either
Rad(K) = A ⇥ Q where A is a prime ideal of P

or Rad(K) = P ⇥ B where B is a prime ideal of
Q. Without loss of generality we may assume that
Rad(K) = A ⇥ Q where A is a prime ideal of P .
Let x be an element of P � A; so (x,?) is not an

element of Rad(A). Let q be an element of Q. Then
(?, q) � (x,?) = (?,?) is an element of A and (x,?)
is not element of Rad(A), so (?, q) is an element of
A, since A is primary. Hence 0⇥Q is a subset of A.
So by Proposition 1, Q = A⇥Q for some ideal A of
P which is easily seen to be primary.

5 Conclusion
In view of the results we obtained in this paper and
those obtained by other authors on quantales, we see
a lot of similarities between the category of quantales
and the category of rings. We have established that
when we give ourselves two unital quantales Q1 and
Q2, the ideals of the direct product Q1 ⇥Q2 are sub-
products, that is to say of the form K1⇥K2 where K

i

is ideal of Q
i

for i 2 {1, 2}. We have also established
that the prime ideals (resp. semi-prime ideal, resp
maximal ideals) of Q1 ⇥Q2 are of the form P1 ⇥Q2

or Q1⇥P2 where P

i

is a prime ideal (resp. semi prime
ideal, resp. maximal ideal) of Q

i

for i = 1, 2.
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