4.
Ashrafizadeh, A. and Hosseinjani, A. A. (2017). A Phenomenological Study
on the Convection Heat Transfer around Two Enclosed Rotating Cylinders via
an Immersed Boundary Method. Int. J. Heat Mass Transfer, 107, 667–685.
https://doi.org/10.1016/j.ijheatmasstransfer.2016.11.078
5.
Mittal, R. and Iaccarino, G. (2005). Immersed Boundary Method. Annu. Rev. Fluid Mech.,
37, 239–261. https://doi.org/10.1146/annurev.fluid.37.061903.175743
6.
Lai, M. C., & Peskin, C. S. (2000). An Immersed Boundary Method with Formal Second-
Order Accuracy and Reduced Numerical Viscosity. J. Comput. Phys., 160(2), 705–719.
https://doi.org/10.1006/jcph.2000.6483
7.
Goldstein, D., Handler, R., & Sirovich, L. (1993). Modeling a No-slip Flow
Boundary with an External Force Field. J. Comput. Phys., 105(2), 354–366.
https://doi.org/10.1006/jcph.1993.1081
8.
Yang, Q. and Cao, S. (2013). Numerical Simulation of Flow around Bluff Bodies Based on
Virtual Boundary Method. The 8th Asia–Pacific Conference on Wind Engineering, Chennai,
pp. 10-14, 582-591. https://doi.org/10.3850/978-981-07-8012-8_154
9.
Mohd-Yusof, J. (1997). For simulations of flow in complex geometries. Annual Research
Briefs, 317.
10.
Ye, T., Mittal, R., Udaykumar, H. S., & Shyy, W. (1999). An Accurate Cartesian Grid
Method for Viscous Incompressible Flows with Complex Immersed Boundaries. J. Com-
put. Phys., 156(2), 209–240. https://doi.org/10.1006/jcph.1999.6356
11.
Santos, R. D., Gama, S. M., & Camacho, R. G. (2018). Two-Dimensional Simu-
lation of the Navier-Stokes Equations for Laminar and Turbulent Flow around a
Heated Square Cylinder with Forced Convection. Applied Mathematics, 9(03), 291–312.
https://doi.org/10.4236/am.2018.93023
12.
Silva, A. L. E., Silveira-Neto, A. and Damasceno, J. J. R. (2003). Numerical Simulation of
Two-Dimensional Flows over a Circular Cylinder using the Immersed Boundary Method.
J. Comput. Phys., 189, 351–370. https://doi.org/10.1016/s0021-9991(03)00214-6
13.
Chorin A. J. (1968). Numerical Solution of the Navier-Stokes Equations. Mathematics of
computation;22(104):745–762. https://doi.org/10.1090/s0025-5718-1968-0242392-2
14.
Chatterjee, D. (2010). Mixed Convection Heat Transfer from Tandem Square Cylinder in
Vertical Channel at Low Reynolds Numbers. Numerical Heat Transfer, Part A: Applications,
58(9), 740–755. https://doi.org/10.1080/10407782.2010.516703
15.
Singh, S., Panigrahi, P. & Muralidhar, K. (2007). Effect of Bouyancy on the Wakes of
Circular and Square Cylinders: A Schlieren-Interferometric Study. Experiments in fluids,
43(1):101–123. https://doi.org/10.1007/s00348-007-0329-8
16.
Moulay, M. A., Belkady, M., Aounallah, A. et.al. (2017). Effect of Opposing Bouyancy on
Two-dimensional Laminar Flow and Heat Transfer Across a Confined Circular Cylinder.
Mechanics, 23(6):859–865. https://doi.org/10.5755/j01.mech.23.6.17291
17.
Anjaiah, N., Dhiman, A. & Chhabra, R. (2006). Mixed Convection Heat Transfer from
a Square Cylinder to Power-Law Fluids in Cross-Flow. In AMSE 2006 2nd Joint US-
Europen Fluids Engineering Summer Meeting Collocated with the 14
t
h
International Con-
ference on Nuclear Engineering, pp. 1435–1444. American Society of Mechanical Engineers.
https://doi.org/10.1115/fedsm2006-98072
18.
Dhiman, A., Anjaiah, N., Chhabra, R. & Eswaran, V. (2007). Mixed Convection from
Heated Square Cylinder to Newtonian and Power-Fluids. Journal of Fluids Engineering,
129(4):506-513. https://doi.org/10.1115/1.2436586
19.
Sharma, N., Dhiman, A. K., & Kumar, S. (2012). Mixed Convection Flow and
Heat Transfer Across a Square Cylinder Under the Influence of Aiding Buoy-
ancy at Low Reynolds Numbers. Int. J. Heat Mass Transfer, 55(9-10), 2601–2614.
https://doi.org/10.1016/j.ijheatmasstransfer.2011.12.034
20.
Breuer, M., Bernsdorf, J., Zeiser, T. & Durst. F. (2000). Accurate Computations of
46 | https://doi.org/10.22481/intermaths.v4i1.12683 R D. C. Santos; Q. G. Silva; S. R. L. Tananta