Referências
1.
J. N. Murrell and S. Carter and S. C. Farantos and P. Huxley and A. J. C. Varandas,
Molecular Potential Energy Functions. New York: Wiley, 1977.
2.
D. Marx and J. Hutter. Ab Initio Molecular Dynamics. New York,: Cambridge University
Press, 2009.
3.
J. P. Araújo and M. Y. Ballester, “A comparative review of 50 analytical representation of po-
tential energy interaction for diatomic systems: 100 years of history”, International Journal
of Quantum Chemistry, vol. 121, pp.e26808 1–102, 2021. https://doi.org/10.1002/qua.26808
4. E. L. Lima, Análise Real: Funções de uma variável, Rio de Janeiro: IMPA, 2008.
5.
J. L. Dunham, “The Energy Levels of a Rotating Vibrator ”, Physical Review, vol. 41,
pp.721–731, 1932. https://doi.org/10.1103/PhysRev.41.721
6.
P. M. Morse, “Diatomic Molecules According to the Wave Mechanics. II. Vibrational
Levels”, Physical Review, vol. 34, pp.57–64, 1929. https://doi.org/10.1103/PhysRev.34.57
7.
J. P. Araújo and M. D. Alves and R. S. da Silva and M. Y. Ballester, “A compara-
tive study of analytic representations of potential energy curves for O
2
, N
2
, and SO in
their ground electronic states”, Journal of Molecular Modeling, vol. 25, pp.1–17,2019.
https://doi.org/10.1007/s00894-019-4079-3
8.
J. N. Murrell and K. S. Sorbie, “New Analytic Form for the Potential Energy Curves of
Stable Diatomic States”, Journal of the Chemical Society, Faraday Transactions 2, vol.70,
pp.1552–1556, 1974. https://doi.org/10.1039/F29747001552
9.
P. Huxley and J. N. Murrell, “Ground-state Diatomic Potentials”,Journal of
the Chemical Society, Faraday Transactions 2, vol. 79, pp.323–328, 1983. DOI
https://doi.org/10.1039/F29837900323
10.
Y. P. Varshni, “Comparative Study of Potential Energy Functions for Di-
atomic Systems”, Reviews of Modern Physics, vol. 29, pp.664–682, 1957.
https://doi.org/10.1103/RevModPhys.29.664
11.
I. N. Levine, “Accurate Potential Energy Function for Diatomic Molecules”, The Journal
of Chemical Physics, vol.45, pp.827–828, 1966. https://doi.org/10.1063/1.1727689
12.
H. M. Hulburt and J. O. Hirschfelder,
`
‘Potential Energy Functions for Diato-
mic Molecules ”textitThe Journal of Chemical Physics, vol. 9, pp. 61–69, 1941.
https://doi.org/10.1063/1.1750827
13.
A. J. C. Varandas and J. D. da Silva, “Potential model for diatomic molecu-
les including the united-atom limit and its use in a multiproperty fit for ar-
gon”,Journal of the Chemical Society, Faraday Transactions, vol. 88, pp. 941–954, 1992.
https://doi.org/10.1039/FT9928800941
14.
A. Aguado and M. Paniagua, “A new functional form to obtain analytical potentials of
triatomic molecules”, The Journal of Chemical Physics, vol. 96, pp. 1265–1275, 1992.
https://doi.org/10.1063/1.462163
15.
R. Rydberg, “Graphische Darstellung einiger bandenspektroskopischer Ergebnisse”, Zeits-
chrift für Physik, vol. 73, pp. 376–385, 1932. https://doi.org/10.1007/BF01341146
16.
O. Z. Klein, “Zur Berechnung von Potentialkurven für zweiatomige Moleküle mit
Hilfe von Spektraltermen”, Zeitschrift für Physik, vol. 76, pp. 226–2355, 1932.
https://doi.org/10.1007/BF01341814
17.
A. L. G. Rees, “The calculation of potential-energy curves from band-spectroscopic
data”, Proceedings of the Physical Society of London A, vol. 59, pp. 998–1008,1947.
https://doi.org/10.1088/0959-5309/59/6/310
18.
A. C. Hurley, “Equivalence of RydbergKleinRees and Simplified Dunham
Potentials”, The Journal of Chemical Physics, vol.36, pp.1117–1118, 1962.
http://dx.doi.org/10.1063/1.1732678
19.
J. F. Ogilvie and D. Koo, “Dunham potential energy coefficients of the hydrogen halides
Judith de P. Araújo et al. INTERMATHS, 4(1), 9–24, June 2023 | 23