8.
G. Kaniadakis, “Statistical mechanics in the context of special relativity”, Physical Review
E, vol. 66, no. 5, p. 056125, 2002. http://doi.org/10.1103/PhysRevE.66.056125
9.
G. Kaniadakis, “Statistical mechanics in the context of special relativity II”, Physical
Review E, vol. 72, no. 3, p. 036108, 2005. http://doi.org/10.1103/PhysRevE.72.036108
10.
A. E. Bashirov, E. M. Kurpınar and A. Özyapıcı, “Multiplicative calculus and its appli-
cations”, Journal of Mathematical Analysis and Applications, vol. 337, pp. 36–48, 2008.
http://doi.org/10.1016/j.jmaa.2007.03.081
11.
A. Kaabouchi, L. Nivanen, Q. Wang, J. Badiali and A. Méhauté, “A mathematical structure
for the generalization of conventional algebra”, Open Physics, vol. 7, no. 3, pp. 549–554,
2009. http://doi.org/10.2478/s11534-009-0046-4
12.
A. E. Bashirov, E. Mısırlı, Y. Tandoğdu and A. Özyapıcı, “On modeling with multiplicative
differential equations”, Applied Mathematics. A Journal of Chinese Universities, vol. 26,
no. 4, pp. 425–438, 2011. http://doi.org/10.1007/s11766-011-2767-6
13.
C. Türkmen and F. Başar, “Some basic results on the sets of sequences with geometric
calculus”, First International Conference on Analyssi and Applied Mathematics: ICAAM
2012. vol. 1470, pp. 95–98, 2012. http://doi.org/10.1063/1.4747648
14.
A. F. Çakmak and F. Başar, “Some new results on sequence spaces with respect to non-
Newtonian calculus”, Journal of Inequalities and Applications, vol. 2012, no. 1, pp. 228,
2012. http://doi.org/10.1186/1029-242X-2012-228
15.
G. Kaniadakis, “Theoretical foundations and mathematical formalism of the power-
law tailed statistical distributions”, Entropy, vol. 15, no. 10, pp. 3983–4010, 2013.
http://doi.org/1099-4300/15/10/3983
16.
A. F. Çakmak and F. Başar, “Certain spaces of functions over the field of non-
Newtonian complex numbers”, Abstract and Applied Analysis, pp. 236124, 2014.
http://doi.org/10.1155/2014/236124
17.
S. Kalajdzievski, An illustrated introduction to topology and homotopy, Chapman and
Hall/CRC, New York: 2015. https://doi.org/10.1201/b15023
18.
B. Turan and Çevik, “A note on the equivalence of some metric and non-Newtonian metric
results”, Turkish Journal of Mathematics and Computer Science, vol. 7, pp. 56–58, 2017.
19.
W. Campillay-Llanos, F. Guevara-Morales, M. Pinto, R. Torres, “Differential and integral
proportional calculus: how to find a primitive for
f
(
x
) = 1
/
√
2πe
−(1/2)x
2
”, International
Journal of Mathematical Education in Science and Technology, vol. 52, no. 3, pp. 463–476,
2020. https://doi.org/10.1080/0020739X.2020.1763489
20.
M. Pinto, R. Torres, W. Campillay-Llanos, F. Guevara-Morales, “Applications of propor-
tional calculus and non-Newtonian logistic growth model”, Proyecciones (Antofagasta),
vol. 39, no. 6, pp. 1471–1513, 2020. https://doi.org/10.22199/issn.0717-6279-2020-06-0090
21.
M. Czachor, “Unifying aspects of generalized calculus”, Entropy. vol. 22, no. 10, p. 1180,
2020. https://doi.org/10.3390/e22101180
22.
G. Kaniadakis, M. Baldi, T. Deisboeck, C. Grisolia, D. Hristopulos, A. Scarfone, A.
Sparavigna, T. Wada and U. Lucia, “The
κ
-statistics approach to epidemiology”, Scientific
Reports, vol. 10, p. 19949, 2020. https://doi.org/10.1038/s41598-020-76673-3
23.
D. F. M. Torres, “On a non-Newtonian calculus of variations”, Axioms, vol. 10, no. 3,
p. 171, 2021. https://doi.org/10.3390/axioms10030171
26 | https://doi.org/10.22481/intermaths.v4i2.13991 R. Temoltzi-Ávila