Circular bioeconomy and bio-based renewable resources: alternatives for Brazilian coffee growing
DOI:
https://doi.org/10.22481/ccsa.v21i38.15705Keywords:
Brazil. Coffee farming. Circular Economy. Bioeconomy. Environment.Abstract
Bioresources, bioprocesses, and bioproducts are concepts related to the synergy between the Circular Economy and Bioeconomy agendas, approaches that offer an interdisciplinary strategy focused on using resources from renewable sources and reducing waste and residue generation through bio-based innovations. Considering the extensive specialized literature on the potential production and (re)use of biomass from bio-based products, this study aimed to estimate the volume of biomass and waste generated by Brazilian coffee growing and discuss the potential applications of these biological base materials according to the principles of Circular Bioeconomy. To this end, an integrative literature review was conducted to identify parameters and coefficients in specialized technical-scientific studies, making it possible to calculate estimates of biomass and waste volumes for the sector as well as presenting and discussing alternatives for (re)using these resources. The results demonstrated the diverse possibilities for generating new bioproducts and bioresources from the processing of biomass and recycling of coffee-growing waste, with a view to minimizing the environmental impacts associated with this productive activity.
Downloads
References
ACCHAR, W.; DULTRA, E. J. V. Thermal analysis and X-ray diffraction of untreated coffee’s husk ash reject and its potential use in ceramics. Journal of Thermal Analysis and Calorimetry, v. 111, n. 2, p. 1331–1334, 2013.
ALEMAYEHU, Y. A.; ASFAW, S. L.; TERFIE, T. A. Reusing urine and coffee processing wastewater as a nutrient source: Effect on soil characteristics at optimum cabbage yield. Environmental Technology & Innovation, v. 23, p. 101571, 1 ago. 2021.
ALVAREZ, N. M. M. et al. Evaluation of mercury (Hg2+) adsorption capacity using exhausted coffee waste. Sustainable Chemistry and Pharmacy, v. 10, p. 60–70, 1 dez. 2018.
ALVES, R. C. et al. State of the art in coffee processing by-products. Handbook of Coffee Processing By-Products: Sustainable Applications, p. 1–26, 1 jan. 2017.
ANTAR, M. et al. Biomass for a sustainable bioeconomy: An overview of world biomass production and utilization. Renewable and Sustainable Energy Reviews, v. 139, p. 110691, 1 abr. 2021.
BARBERO-LÓPEZ, A. et al. Revalorization of coffee silverskin as a potential feedstock for antifungal chemicals in wood preservation. International Biodeterioration & Biodegradation, v. 152, p. 105011, 1 ago. 2020.
BARBOSA, M. DE O. et al. Bioeconomia: Um novo caminho para a sustentabilidade na Amazônia? Research, Society and Development, v. 10, n. 10, p. 41101018545, 5 ago. 2021.
BEFORT, Nicolas. The bioeconomy: institutions, innovation and sustainability. Routledge, 2023.
BLINOVÁ, L. et al. Utilization of Waste From Coffee Production. Research Papers Faculty of Materials Science and Technology Slovak University of Technology, v. 25, n. 40, p. 91–101, 1 jun. 2017.
BRANDÃO, A. S.; GONÇALVES, A.; SANTOS, J. M. R. C. A. Circular bioeconomy strategies: From scientific research to commercially viable products. Journal of Cleaner Production, v. 295, p. 126407, 1 maio 2021.
CAMPOS, R. C. et al. New sustainable perspectives for “Coffee Wastewater” and other by-products: A critical review. Future Foods, v. 4, p. 100058, 1 dez. 2021.
CHO, D. W. et al. Fabrication of magnetic biochar as a treatment medium for As(V) via pyrolysis of FeCl3-pretreated spent coffee ground. Environmental Pollution, v. 229, p. 942–949, 1 out. 2017a.
CHO, Y. H. et al. Potential effect of compounds isolated from Coffea arabica against UV-B induced skin damage by protecting fibroblast cells. Journal of Photochemistry and Photobiology B: Biology, v. 174, p. 323–332, 1 set. 2017b.
CHOI, H. S. et al. Topical application of spent coffee ground extracts protects skin from ultraviolet B-induced photoaging in hairless mice. Photochemical and Photobiological Sciences, v. 15, n. 6, p. 779–790, 1 jun. 2016.
CONTERATTO, C. et al. Biorefinery: A comprehensive concept for the sociotechnical transition toward bioeconomy. Renewable and Sustainable Energy Reviews, v. 151, p. 111527, 1 nov. 2021.
D’AMATO, D.; KORHONEN, J. Integrating the green economy, circular economy and bioeconomy in a strategic sustainability framework. Ecological Economics, v. 188, p. 107143, 2021.
DÁVILA-GUZMÁN, N. E. et al. Copper Biosorption by Spent Coffee Ground: Equilibrium, Kinetics, and Mechanism. CLEAN – Soil, Air, Water, v. 41, n. 6, p. 557–564, 1 jun. 2013. COSTA, F. D. A. et al. Bioeconomia da sociobiodiversidade no estado do Pará. Brasília, DF: The Nature Conservancy (TNC Brasil), Banco Interamericano de Desenvolvimento (BID), Natura, 2021.
CRUZ, R. COFFEE BY-PRODUCTS Sustainable Agro-Industrial Recovery and Impact on Vegetables Quality. Dissertação de Mestrado—Porto, Portugal: Universidade do Porto, set. 2014.
DE ALMEIDA-COUTO, J. M. F. et al. Oil recovery from defective coffee beans using pressurized fluid extraction followed by pyrolysis of the residual biomass: Sustainable process with zero waste. The Journal of Supercritical Fluids, v. 180, p. 105432, 1 fev. 2022.
DEL POZO, C. et al. Converting coffee silverskin to value-added products by a slow pyrolysis-based biorefinery process. Fuel Processing Technology, v. 214, p. 106708, 1 abr. 2021.
ECHEVERRIA, M. C.; NUTI, M. Valorisation of the Residues of Coffee Agro-industry: Perspectives and Limitations. The Open Waste Management Journal, v. 10, n. 1, p. 13–22, 2017.
FERREIRA, V. et al. Research trends and hotspots in bioeconomy impact analysis: a study of economic, social and environmental impacts. Environmental Impact Assessment Review, v. 96, p. 106842, 1 set. 2022.
FRANCA, Adriana S.; OLIVEIRA, Leandro S. Coffee processing solid wastes: current uses and future perspectives. Agricultural wastes, v. 9, p. 155-189, 2009.
FRÓMETA, R. A. R.; SÁNCHEZ, J. L.; GARCÍA, J. M. R. Evaluation of coffee pulp as substrate for polygalacturonase production in solid state fermentation. Emirates Journal of Food and Agriculture, v. 32, n. 2, p. 117–124, 5 mar. 2020.
GEISSDOERFER, Martin; SAVAGET, Paulo; BOCKEN, Nancy M.P.; HULTINK, Erik Jan. The Circular Economy – A new sustainability paradigm?, Journal of Cleaner Production, Volume 143, p. 757-768, 2017. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0959652616321023>
GIROTTO, F. et al. The broad spectrum of possibilities for spent coffee grounds valorisation. Journal of Material Cycles and Waste Management, v. 20, n. 1, p. 695–701, 1 jan. 2018.
GREGG, J. S. et al. Valorization of bio-residuals in the food and forestry sectors in support of a circular bioeconomy: A review. Journal of Cleaner Production, v. 267, p. 122093, 10 set. 2020.
GURRAM, R. et al. Technical possibilities of bioethanol production from coffee pulp: A renewable feedstock. Clean Technologies and Environmental Policy, v. 18, n. 1, p. 269–278, 1 jan. 2016.
HAILE, M. Integrated volarization of spent coffee grounds to biofuels. Biofuel Research Journal, v. 1, n. 2, p. 65–69, 1 jun. 2014.
HERNÁNDEZ, M. A.; SUSA, M. R.; ANDRES, Y. Use of coffee mucilage as a new substrate for hydrogen production in anaerobic co-digestion with swine manure. Bioresource Technology, v. 168, p. 112–118, 1 set. 2014.
HETEMÄKI, Lauri et al. Leading the way to a European circular bioeconomy strategy. Joensuu, Finland: European Forest Institute, 2017.
HUSSAIN, N. et al. Cadmium (II) removal from aqueous solution using magnetic spent coffee ground biochar: Kinetics, isotherm and thermodynamic adsorption. Materials Research Express, v. 7, n. 8, p. 085503, 26 ago. 2020.
IBGE. INSTITUTO BRASILEIRO DE GEOGRAFIA ESTATÍSTICA. Pesquisa Agrícola Municipal (PAM). Disponível em: <https://www.ibge.gov.br/estatisticas/economicas/agricultura-e-pecuaria/9117-producao-agricola-municipal-culturas-temporarias-e-permanentes.html?edicao=18051&t=publicacoes>. Acesso em: 2 jun. 2023
IRIONDO-DEHOND, A. et al. Coffee Silverskin Extract Protects against Accelerated Aging Caused by Oxidative Agents. Molecules 2016, Vol. 21, Page 721, v. 21, n. 6, p. 721, 1 jun. 2016.
KERSHAW, Eleanor Hadley; HARTLEY, Sarah; MCLEOD, Carmen; POLSON, Penelope. The Sustainable Path to a Circular Bioeconomy. Trends in Biotechnology, Volume 39, Issue 6, p. 542-545, 2021. Disponível em: <https://www.sciencedirect.com/science/article/pii/S0167779920302924>
KIM, J.; KIM, H.; LEE, C. Ulva biomass as a co-substrate for stable anaerobic digestion of spent coffee grounds in continuous mode. Bioresource Technology, v. 241, p. 1182–1190, 1 out. 2017.
KUMAR, N.; WELDON, R.; LYNAM, J. G. Hydrothermal carbonization of coffee silverskins. Biocatalysis and Agricultural Biotechnology, v. 36, p. 102145, 1 set. 2021.
KWON, E. E.; YI, H.; JEON, Y. J. Sequential co-production of biodiesel and bioethanol with spent coffee grounds. Bioresource Technology, v. 136, p. 475–480, 1 maio 2013.
LE, V. T. et al. Adsorption of Ni(II) ions by magnetic activated carbon/chitosan beads prepared from spent coffee grounds, shrimp shells and green tea extract. Environmental technology, v. 41, n. 21, p. 2817–2832, 18 set. 2019.
LEONG, Y. K.; CHANG, J. S. Valorization of fruit wastes for circular bioeconomy: Current advances, challenges, and opportunities. Bioresource Technology, v. 359, p. 127459, 1 set. 2022.
LIU, S. et al. Enhancement of As( v ) adsorption from aqueous solution by a magnetic chitosan/biochar composite. RSC Advances, v. 7, n. 18, p. 10891–10900, 10 fev. 2017.
LOUKRI, A. et al. Green extraction of caffeine from coffee pulp using a deep eutectic solvent (DES). Applied Food Research, v. 2, n. 2, p. 100176, 1 dez. 2022.
LOULIDI, I. et al. Assessment of Untreated Coffee Wastes for the Removal of Chromium (VI) from Aqueous Medium. International Journal of Chemical Engineering, v. 2021, 2021.
MABEE, Warren E. Conceptualizing the circular bioeconomy. In: STEFANAKIS, Alexandros; NIKOLAOU, Ioannis, (Ed.). Circular Economy and Sustainability. Elsevier, p. 53-69, 2022. Disponível em: <https://www.sciencedirect.com/science/article/pii/B9780128198179000338>
MAHJOUB, B.; DOMSCHEIT, E. Chances and challenges of an organic waste–based bioeconomy. Current Opinion in Green and Sustainable Chemistry, v. 25, p. 100388, 1 out. 2020.
MAK, T. M. W. et al. Sustainable food waste management towards circular bioeconomy: Policy review, limitations and opportunities. Bioresource Technology, v. 297, p. 122497, 1 fev. 2020.
MANASA, V.; PADMANABHAN, A.; APPAIAH, K. A. A. Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Management, v. 120, p. 762–771, 1 fev. 2021.
MARTINEZ, F. A. C. et al. Lactic acid properties, applications and production: A review. Trends in Food Science & Technology, v. 30, n. 1, p. 70–83, 1 mar. 2013.
MARTINEZ-SAEZ, N. et al. A novel antioxidant beverage for body weight control based on coffee silverskin. Food Chemistry, v. 150, p. 227–234, 1 maio 2014.
MARTINS, R. S. F. et al. Investigation of agro-industrial lignocellulosic wastes in fabrication of particleboard for construction use. Journal of Building Engineering, v. 43, p. 102903, 1 nov. 2021.
MATOS, A. T. Tratamento de resíduos na pós-colheita do café. In: BOREM, F. M. (Ed.). Pós-colheita do café. Lavras: Ed. UFLA, 2008. p. 159-201.
MAXISELLY, Y. et al. Digestibility, Blood Parameters, Rumen Fermentation, Hematology, and Nitrogen Balance of Goats after Receiving Supplemental Coffee Cherry Pulp as a Source of Phytochemical Nutrients. Veterinary Sciences 2022, Vol. 9, Page 532, v. 9, n. 10, p. 532, 28 set. 2022.
MESA, Jaime A.; SIERRA-FONTALVO, Lesly; ORTEGON, Katherine; GONZALEZ-QUIROGA; Arturo. Advancing circular bioeconomy: A critical review and assessment of indicators. Sustainable Production and Consumption, Volume 46, 2024, p. 324-342. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2352550924000678#bb0035>
MIRÓN-MÉRIDA, V. A. et al. Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT, v. 101, p. 167–174, 1 mar. 2019.
MOHAN, S. V. et al. Waste biorefinery models towards sustainable circular bioeconomy: Critical review and future perspectives. Bioresource Technology, v. 215, p. 2–12, 1 set. 2016.
MONTOYA, A. C. V. et al. Hydrogen, alcohols and volatile fatty acids from the co-digestion of coffee waste (coffee pulp, husk, and processing wastewater) by applying autochthonous microorganisms. International Journal of Hydrogen Energy, v. 44, n. 39, p. 21434–21450, 13 ago. 2019.
MORONE, P., D'AMATO, D., BEFORT, N., & YILAN, G. The circular bioeconomy: Theories and tools for economists and sustainability scientists. Cambridge University Press, 2023.
MURTHY, P. S.; NAIDU, M. M. Sustainable management of coffee industry by-products and value addition—A review. Resources, Conservation and Recycling, v. 66, p. 45–58, 1 set. 2012.
NAM, G. et al. An Environmentally Benign Approach for As (V) Absorption from Wastewater Using Untreated Coffee Grounds—Preliminary Results. Water 2017, Vol. 9, Page 867, v. 9, n. 11, p. 867, 7 nov. 2017.
NEU, A. K. et al. Fermentative utilization of coffee mucilage using Bacillus coagulans and investigation of down-stream processing of fermentation broth for optically pure l(+)-lactic acid production. Bioresource Technology, v. 211, p. 398–405, 1 jul. 2016.
OIC. ORGANIZAÇÃO INTERNACIONAL DO CAFÉ. Dados históricos sobre o comércio global de café. Disponível em: <https://www.ico.org/new_historical.asp>. Acesso em: 2 jun. 2023.
O’CALLAGHAN, K. Technologies for the utilisation of biogenic waste in the bioeconomy. Food Chemistry, v. 198, p. 2–11, 1 maio 2016.
ORREGO, D.; ZAPATA-ZAPATA, A. D.; KIM, D. Ethanol production from coffee mucilage fermentation by S. cerevisiae immobilized in calcium-alginate beads. Bioresource Technology Reports, v. 3, p. 200–204, 1 set. 2018.
OSONG, S. H.; NORGREN, S.; ENGSTRAND, P. Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 2015 23:1, v. 23, n. 1, p. 93–123, 27 out. 2015.
PARDO, L. M. F. et al. Comprehensive analysis of ethanol production from coffee mucilage under sustainability indicators. Chemical Engineering and Processing - Process Intensification, v. 182, p. 109183, 1 dez. 2022.
POLIDORO, A. DOS S. et al. Valorization of coffee silverskin industrial waste by pyrolysis: From optimization of bio-oil production to chemical characterization by GC × GC/qMS. Journal of Analytical and Applied Pyrolysis, v. 129, p. 43–52, 1 jan. 2018.
RABBI, Mohammad Fazle; AMIN, Mohammad Bin. Circular economy and sustainable practices in the food industry: A comprehensive bibliometric analysis. Cleaner and Responsible Consumption, Volume 14, 2024. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2666784324000391>
REIS, R. S. et al. Characterization of coffee parchment and innovative steam explosion treatment to obtain microfibrillated cellulose as potential composite reinforcement. Journal of Materials Research and Technology, v. 9, n. 4, p. 9412–9421, 1 jul. 2020
RODRIGUES, F. et al. In vitro and in vivo comparative study of cosmetic ingredients Coffee silverskin and hyaluronic acid. Experimental Dermatology, v. 25, n. 7, p. 572–574, 1 jul. 2016.
RODIGUEZ, M. H. et al. Adsorption of Ni(II) on spent coffee and coffee husk based activated carbon. Journal of Environmental Chemical Engineering, v. 6, n. 1, p. 1161–1170, 1 fev. 2018.
SANTANA, M. S. et al. Hydrochar production from defective coffee beans by hydrothermal carbonization. Bioresource Technology, v. 300, p. 122653, 1 mar. 2020.
SANTOS, É. M. DOS et al. Coffee by-products in topical formulations: A review. Trends in Food Science & Technology, v. 111, p. 280–291, 1 maio 2021.
SERNA-JIMÉNEZ, J. A. et al. Advanced extraction of caffeine and polyphenols from coffee pulp: Comparison of conventional and ultrasound-assisted methods. LWT, v. 177, p. 114571, 1 mar. 2023.
SHANMUGAM, M. K.; RATHINAVELU, S.; GUMMADI, S. N. Self-directing optimization for enhanced caffeine degradation in synthetic coffee wastewater using induced cells of Pseudomonas sp.: Bioreactor studies. Journal of Water Process Engineering, v. 44, p. 102341, 1 dez. 2021.
SHEN, M. Y. et al. Improvement of gaseous bioenergy production from spent coffee grounds Co-digestion with pulp wastewater by physical/chemical pretreatments. International Journal of Hydrogen Energy, v. 47, n. 96, p. 40664–40671, 12 dez. 2022.
SHENOY, D. et al. A study on bioethanol production from cashew apple pulp and coffee pulp waste. Biomass and Bioenergy, v. 35, n. 10, p. 4107–4111, 15 out. 2011.
SOLARTE-TORO, J. C.; ALZATE, C. A. C. Biorefineries as the base for accomplishing the sustainable development goals (SDGs) and the transition to bioeconomy: Technical aspects, challenges and perspectives. Bioresource Technology, v. 340, p. 125626, 1 nov. 2021.
STEGMANN, Paul; LONDO, Marc; JUNGINGER, Martin. The circular bioeconomy: Its elements and role in European bioeconomy clusters. Resources, Conservation & Recycling: X, v. 6, p. 100029, 2020.
SWAMINAATHAN, Pavithra; SARAVANAN, A.; THAMARAI, P. Utilization of bioresources for high-value bioproducts production: Sustainability and perspectives in circular bioeconomy. Sustainable Energy Technologies and Assessments, Volume 63, 2024. Disponível em: <https://www.sciencedirect.com/science/article/pii/S2213138824000687>
TALAN, A. et al. Biorefinery strategies for microbial bioplastics production: Sustainable pathway towards Circular Bioeconomy. Bioresource Technology Reports, p. 100875, 6 nov. 2021.
TORRACO, R. J. Writing Integrative Literature Reviews: Guidelines and Examples. Human Resource Development Review, 4(3), p. 356-367, 2005. Disponível em: <https://journals.sagepub.com/doi/abs/10.1177/1534484305278283>
UBANDO, A. T.; FELIX, C. B.; CHEN, W. H. Biorefineries in circular bioeconomy: A comprehensive review. Bioresource Technology, v. 299, p. 122585, 1 mar., 2020.
VÍTĚZ, T. et al. ON THE SPENT COFFEE GROUNDS BIOGAS PRODUCTION. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, v. 64, p. 143, 2016.
WEI, X. et al. Knowledge Mapping of bioeconomy: A bibliometric analysis. Journal of Cleaner Production, v. 373, p. 133824, 1 nov. 2022.
YAASHIKAA, P. R.; KUMAR, P. S.; VARJANI, S. Valorization of agro-industrial wastes for biorefinery process and circular bioeconomy: A critical review. Bioresource Technology, v. 343, p. 126126, 1 jan. 2022.
YADIRA, P. S. B. et al. Bioethanol Production from Coffee Mucilage. Energy Procedia, v. 57, p. 950–956, 1 jan. 2014.
YEN, H. Y.; HUANG, S. L. Ni(II) removal from wastewater by solar energy-degreased spent coffee grounds. New pub: Balaban, v. 57, n. 32, p. 15049–15056, 8 jul. 2015.
YÉPEZ, A. et al. Biopreservation potential of lactic acid bacteria from Andean fermented food of vegetal origin. Food Control, v. 78, p. 393–400, 1 ago. 2017.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Cadernos de Ciências Sociais Aplicadas
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.