Traveling Waves in a Kermack-McKendric Epidemic Model
DOI:
https://doi.org/10.22481/intermaths.v5i2.15692Palavras-chave:
Kermack-McKendrick model, minimal wave speed, traveling waves, basic reproduction numberResumo
This study explores the existence of traveling wave solutions in the classical Kermack-McKendrick epidemic model with local diffusive. The findings highlight the critical role of the basic reproduction number R0 in shaping wave dynamics. Traveling wave solutions are shown to exist for wave speeds c ≥ c* when R0 > 1, with c* denoting the minimal wave speed. Conversely, no traveling waves are observed for c < c* or R0 < 1. Numerical simulations are employed to validate the theoretical results, demonstrating the presence of traveling waves for a range of nonlinear incidence functions and offering insights into the spatial spread.
Downloads
Metrics
Referências
W.O.Kermack, A.G. McKendrick. A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. A 115, 700–721 (1927). DOI: 10.1098/rspa.1927.0118.
F. Dong, W. Li, J. Wang, Propagation dynamics in a three-species competition model with nonlocal anisotropic dispersal. Nonlinear Anal., Real World Appl. 48, 232–266 (2019).DOI: 10.1016/j.nonrwa.2018.09.014.
C. Tomás, M. Fatini, M; Pettersson. A stochastic SIRI epidemic model with relapse and media coverage. Discrete Contin. Dyn. Syst. 23(8), 3483–3501 (2018).DOI: 10.3934/dcdss.2018122.
Y. Cai, W. Wang; Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion. Nonlinear Anal., Real World Appl. 30, 99–125 (2016).DOI: 10.1016/j.nonrwa.2015.06.008.
H. Thieme, X. Zhao. Asymptotic speeds of spread and traveling waves for integral equations and delayed reaction-diffusion models. J. Differ. Equ. 195(2), 430–470 (2003).DOI: 10.1016/S0022-0396(03)00006-5.
E. Crooks, E. Dancer, D. Hilhorst, M. Mimura, H. Ninomiya. Spatial segregation limit of a competition-diffusion system with Dirichlet boundary conditions. Nonlinear Anal., Real World Appl. 5(4), 645–665 (2004).DOI: 10.1016/j.nonrwa.2004.05.005.
J. Wei, X.Q. Zhao. Spatial dynamics of reaction-diffusion epidemic models. Journal of Dynamics and Differential Equations, 32(4), 1655–1686 (2020). DOI: 10.1007/s10884-01909817-1.
B. Guenad, R. Darazirar, S. Djilali, I. Alraddadi. Traveling waves in a delayed reaction–diffusion SIR epidemic model with a generalized incidence function, Nonlinear Dynamics, (2024).
J. Li, X. Q. Zhao. Traveling wave solutions in delayed reaction–diffusion systems with partial monotonicity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 134(5), 899–923 (2004).DOI: 10.1017/S0308210500003545.
M. A. Lewis, B. Li. Spreading speed and traveling waves for nonlinear discrete-time and continuous-time models. Journal of Mathematical Biology, 65(5), 887–918 (2012).DOI: 10.1007/s00285-011-0467-1.
K Wang, H Zhao, H Wang, R Zhang. Traveling wave of a reaction–diffusion vector borne disease model with nonlocal effects and distributed delay. Journal of Dynamics and Differential Equations 35.4 (2023) 3149-3185.DOI: 10.1007/s10884-022-10200-3.
R Zhang, L Liu, X Feng, Z Jin. Existence of traveling wave solutions for a diffusive tuberculosis model with fast and slow progression. Applied Mathematics Letters 112 (2021) 106848. DOI: 10.1016/j.aml.2020.106848.
L Yang, Y Li. Periodic traveling waves in a time periodic SEIR model with nonlocal dispersal and delay. Discrete & Continuous Dynamical Systems-Series B 28.9 (2023). DOI: 10.3934/dcdsb.2023113.
D Denu, S Ngoma, RB Salako . Dynamics of solutions of a diffusive time-delayed HIV/AIDS epidemic model: traveling wave solutions and spreading speeds. Journal of Differential Equations 344 (2023) 846-890. DOI: 10.1016/j.jde.2022.11.028.
L Lu, JB Wang. Traveling waves of the SIR epidemic model with discrete diffusion and treatment. Applied Mathematics Letters 138 (2023) 108515.DOI: 10.1016/j.aml.2022.108515.
L Zhao. Spreading speed and traveling wave solutions of a reaction–diffusion Zika model with constant recruitment. Nonlinear Analysis: Real World Applications 74 (2023): 103942. DOI: 10.1016/j.nonrwa.2023.103942
K Wang, H Zhao, H Wang, R Zhang , Traveling wave of a reaction–diffusion vector borne disease model with nonlocal effects and distributed delay. Journal of Dynamics and Differential Equations 35.4 (2023) 3149-3185.
X Wang, G Lin, S Ruan, Spreading speeds and traveling wave solutions of diffusive vector borne disease models without monotonicity. Proceedings of the Royal Society of Edinburgh Section A: Mathematics 153.1 (2023) 137-166. DOI: 10.1017/prm.2022.22.
S Bagheri, MH Akrami, GB Loghmani. Traveling wave in an eco-epidemiological model with diffusion and convex incidence rate: Dynamics and numerical simulation. Mathematics and Computers in Simulation 216 (2024) 347-366. DOI: 10.1016/j.matcom.2023.127680.
L Zhao, ZC Wang, S Ruan, Traveling wave solutions in a two-group SIR epidemic model with constant recruitment. Journal of mathematical biology 77 (2018): 1871-1915. DOI: 10.1007/s00285-018-1265-6.
A. Källén, Thresholds and travelling waves in an epidemic model for rabies, Nonlinear Analysis. Theory, MeOtods & Agplications, Vol. 8, No. 8. pp. 851-856, 1984. DOI: 10.1016/0362-546X(84)90088-5.
N A.Kallen, P.Arcuri & J. D.Murray , A simple model for the spatial spread of rabies, Journal of Theoretical Biology,Volume 116, Issue 3, 377-393, (1985).DOI: 10.1016/S00225193(85)80248-4.
P. C. Fife , Mathematical aspects of reacting and diffusing systems, Lecture Notes in Biomathematics, 28, Springer,Berlin (1979). DOI: 10.1007/978-3-642-93147-6.
A.Friedman , Partial Differential Equations of Parabolic Type, Prentice-Hall, Englewood Cliffs, N.J. (1964).
D. G.Aronson, H. F.Weinberger, Nonlinear diffusion in population genetics, combustion and nerve propagation, in Proceedings of the Tulane Program in Partial Differential Equations and Related Topics, Lecture Notes in Mathematics 446, 5-49, Springer, Berlin (1975).DOI: 10.1007/BFb0063699.
W Wu, Z Teng. Periodic traveling waves for a diffusive SIR epidemic model with general nonlinear incidence and external supplies. Communications in Nonlinear Science and Numerical Simulation 116 (2023) 106848.DOI: 10.1016/j.cnsns.2023.107431
W Wu, Z Teng. Traveling waves of a discrete diffusive waterborne pathogen model with general incidence. Communications in Nonlinear Science and Numerical Simulation 126 (2023) 107431.DOI: 10.1016/j.cnsns.2023.107431.
HY Alfifi. Effects of diffusion and delayed immune response on dynamic behavior in a viral model. Applied Mathematics and Computation 441 (2023) 127714. DOI: 10.1016/j.amc.2023.127714.
T Wen, X Wang, G Zhang. Hopf Bifurcation in a reaction–diffusion–advection model with two nonlocal delayed density-dependent feedback terms. Communications in Nonlinear Science and Numerical Simulation 119 (2023) 107080. DOI: 10.1016/j.cnsns.2023.107080.
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Intermaths
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of Revista INTERMATHS/Journal INTERMATHS is licensed under a Creative Commons - Atribuição 4.0 Internacional (CC-BY 4.0).