Meeting the Fractional Calculus




Cálculo Fracionário, Ensino, Pesquisa


Download data is not yet available.


Metrics Loading ...


K. S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley & Sons, Inc., New York, (1993).

S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Intergrals and Derivatives, Gordon and Breach Science Publishers, Amsterdam, (1993).

A. A. Kilbas, H. M. Srivastava and J. J. Trujillo, The Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Elsevier, Amsterdam, (2006).

J. A. Tenreiro Machado, V. Kiryakova and F. Mainardi, Recent history of fractional calculus, Commun. Nonl. Sci. Num. Simulat., 16, 1140-1153, (2011).

R. Figueiredo Camargo e E. Capelas de Oliveira, Cálculo Fracionário, Editora Livraria da Física, São Paulo, (2015). ISBN 9788578613297

J. A. Tenreiro Machado, V. Kiryakova, F. Mainardi and T. Atanacković, Round Table Discussion - Fractional Calculus: D’où venons nous? Que sommes-nous? Où allons nous?, Frac. Cal. & Appl. Cal., 19, 1074-1104, (2016).

D. S. Oliveira and E. Capelas de Oliveira, On the generalized (k,ρ)-fractional derivative, Progr. Fract. Differ. Appl., 2, 133-145, (2018).

J. V. da Costa Sousa and E. Capelas de Oliveira, On the ψ-Hilfer fractional derivative, Commun. Nonl. Sci. Numer. Simulat., 60, 72-91, (2018).

G. Sales Teodoro, J. A. Tenreiro Machado, and E. Capelas de Oliveira, A review of definitions of fractional derivatives and other operators, J. Comput. Phys., 388, 195-209, (2019).

A. R. Gómez Plata y E. Capelas de Oliveira, Introducción al Cálculo Fraccional, Editorial Neogranadina, Bogotá, (2019).

E. Capelas de Oliveira, Solved Exercises in Fractional Calculus, Studies in Systems, Decision and Control, vol. 240, Springer Nature Switzerland AG, (2019).

E. Capelas de Oliveira, S. Jarosz, and J. Vaz Jr., On the mistake in defining fractional derivative using a non-singular kernel, arXiv:1912.04422v3.

R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer Monograph in Mathematics, Second Edition, Heidelberg, (2021).

J. Vaz Jr. and E. Capelas de Oliveira, On the fractional Kelvin-Voigt oscillator, Math. Eng., 4, 1-23, (2022).



How to Cite

Capelas de Oliveira, E. (2021). Meeting the Fractional Calculus. INTERMATHS, 2(2), 5-13.