Sobre um processo de difusão com reinícios não-estáticos sujeito a um campo potencial variante com o tempo
DOI:
https://doi.org/10.22481/intermaths.v5i1.14959Palavras-chave:
Movimento Browniano num Campo Potencial, Reinício Estocástico, Auto-correlação, Custo Quadrático, Tempo de Primeira PassagemResumo
Consideramos uma única partícula difusiva que sofre reinícios não-estáticos, i.e. variantes no tempo, e está imersa num campo potencial também variante no tempo, sob a hipótese de que os reinícios não afetam o potencial. Exibimos alguns resultados novos referentes a momentos e auto-correlação do processo. Observamos que o processo mantém uma correlação sempre positiva entre passado e futuro. Ademais, discutimos sobre uma medida do custo envolvido para reiniciar o processo até que o mesmo atinja um objetivo definido. Além disso, ilustramos o comportamento do processo em exemplos elucidados tanto analiticamente quanto por meio de simulações computacionais, verificando a importância da relação entre a forma funcional do potencial e da função de reinício. Em particular, notamos nos exemplos simulados que a existência do campo potencial pode impedir o processo de atingir um objetivo, mesmo que haja reinício.
Downloads
Metrics
Referências
M. R. Evans and S. N. Majumdar, “Diffusion with Optimal Resetting”, J. Phys. A: Math. Theor. 44, 435001, 2011.
M. R. Evans and S. N. Majumdar, “Diffusion with Stochastic Resetting”, Physical Review Letters 106, 160601, 2011.
B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar and S. Ciliberto, “Optimal mean first-passage time for a Brownian searcher subjected to resetting: Experimental and theoretical results”, Phys. Rev. Research 2(3), 032029, 2020. https://link.aps.org/doi/10.1103/PhysRevResearch.2.032029
O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni and Y. Roichman, “Experimental realization of diffusion with stochastic resetting”, J. Phys. Chem. Lett. 11(17), 7350–7355, 2020. http://dx.doi.org/10.1021/acs.jpclett.0c02122
S. Reuveni, M. Urbakh and J. Klafter, “Role of substrate unbinding in Michaelis-Menten enzymatic reactions”, Proc. Natl. Acad. Sci. 111(12), 4391–4396, 2014.
A. M. Ramoso, J. A. Magalang, D. Sa´nchez-Taltavull, J. P. Esguerra and ´E Rolda´n, “Stochastic resetting antiviral therapies prevent drug resistance development”, EPL 132(5), 50003, 2020. https://iopscience.iop.org/article/10.1209/0295-5075/132/50003/meta
T. T. Da Silva and M. D. Fragoso, “Diffusion with stochastic resetting of interacting particles emerging from a model of population genetics”, J. Phys. A: Math. Theor. 55(14003), pp. 1–28, 2022.
R. Poghosyan, V. Suvorov, R. Zadourian and D. B. Saakian, “The Non-perturbative Phenomenon for the Crow Kimura Model with Stochastic Resetting”, J. Phys. Soc. Jpn., 92
(12), 124801, 2023. https://doi.org/10.7566/JPSJ.92.124801
M. Montero, J. Perello´ and J. Masoliver, “Valuing the distant future under stochastic resettings: the effect on discounting”, J. Phys. A: Math. Theor. 55(46), 464001, 2022.
https://iopscience.iop.org/article/10.1088/1751-8121/ac9f8a/meta
V. Stojkoski, P. Jolakoski, A. Pal, T. Sandev, L. Kocarev and R. Metzler, “Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity”, Philos. Trans. A Math. Phys. Eng. Sci. 380(2224), 20210157, 2022. http://dx.doi.org/10.1098/rsta.2021.0157
M. R. Evans, S. N. Majumdar and G. Schehr, “Stochastic Resetting and Applications”, J. Phys. A: Math. Theor. 53, 193001, 2020. http://dx.doi.org/10.1088/1751-8121/ab7cfe
S. Gupta and A. M. Jayannavar, “Stochastic resetting: A (very) brief review”, Front. Phys., 10, 789097, 2022. http://dx.doi.org/10.3389/fphy.2022.789097
S. Ahmad, I. Nayak,A. Bansal, A. Nandi and D. Das, “First passage of a particle in a potential under stochastic resetting: A vanishing transition of optimal resetting rate”, Phys. Rev. E 99, 022130, 2019.
A. Pal, “Diffusion in a potential landscape with stochastic resetting”, Physical Review E 91(012113), pp. 1–7, 2015.
M. A. F. Dos Santos, “Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting”, Physics 1, pp. 40 – 58, 2019. doi:10.3390/physics1010005
J. Q. Toledo-Marin, D. Boyer and F. J. Sevilla, “Predator-prey Dynamics: chasing by stochastic resetting”, Arxiv, 2019. http://arxiv.org/abs/1912.02141
J. Q. Toledo-Marin and D. Boyer, “First passage time and information of a one-dimensional Brownian particle with stochastic resetting to random positions”, Physica A: Statistical Mechanics and its Applications, 625, 129027, 2023. doi: 10.1016/j.physa.2023.129027
T. T. Da Silva, T. T., “On a Diffusion which Stochastically Restarts from Moving Random Spatial Positions: a Non-renewal Framework”, J. Phys. A: Math. Theor., 56(49), 495004, 2023. http://dx.doi.org/10.1088/1751-8121/ad09ed
S. Reuveni, “Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal”, Phys. Rev. Lett., 116, 170601, 2016. http://dx.doi.org/10.1103/PhysRevLett.116.170601
J. C. Sunil, R. A. Blythe, M. R. Evans and S. N. Majumdar, “The cost of stochastic resetting”, J. Phys. A: Math. Theor. 56(39), 395001, 2023. https://iopscience.iop.org/article/10.1088/1751-8121/acf3bb/meta
V. Stojkoski, T. Sandev, L. Kocarev and A. Pal, “Autocorrelation functions and ergodicity in diffusion with stochastic resetting”, J. Phys. A: Math. Theor. 55, 104003, 2022. https://doi.org/10.1088/1751-8121/ac4ce9
S. N. Majumdar and G. Oshanin, “Spectral content of fractional Brownian motion with stochastic reset”, J. Phys. A Math. Gen., 51, 435001, 2018. http://dx.doi.org/10.1088/1751-8121/aadef0
D. Vinod, A. Cherstvy, R. Metzler and I. Sokolov, “Time-averaging and Nonergodicity of Reset Geometric Brownian Motion with Drift”, Phys. Rev. E, 106, 034137, 2022.
https://link.aps.org/doi/10.1103/PhysRevE.106.034137
E. Barkai and R. Flaquer-Galm´es and V. M´endez, “Ergodic properties of Brownian motion under stochastic resetting”, Phys. Rev. E, 108, 064102, 2023.
http://dx.doi.org/10.1103/PhysRevE.108.064102
M. Bachar, J. J. Batzel and S. Ditlevsen, Stochastic Biomathematical Models: with Applications to Neuronal Modeling, Springer, 2012.
J. M. Meylahn, S. Sabhapandit and H. Touchette, “Large deviations for Markov processes with resetting”, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 92 (6), 062148, 2015.
http://dx.doi.org/10.1103/PhysRevE.92.062148
C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Phys. Rev. Lett., 78(14), pp. 2690–2693, 1997. https://link.aps.org/doi/10.1103/PhysRevLett.78.2690
D. Gupta, C. A. Plata and A. Pal, “Work Fluctuations and Jarzynski Equality in Stochastic Resetting”, Phys. Rev. Lett.,124(11), 110608, 2020.
http://dx.doi.org/10.1103/PhysRevLett.124.110608
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer: New York, 2009. https://link.springer.com/book/10.1007/978-0-387-76896-0
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Copyright (c) 2024 Intermaths
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
All content of Revista INTERMATHS/Journal INTERMATHS is licensed under a Creative Commons - Atribuição 4.0 Internacional (CC-BY 4.0).