On a Diffusion Process with Non-static Restarts Subjected to a Time-Varying Potential
DOI:
https://doi.org/10.22481/intermaths.v5i1.14959Keywords:
Brownian Motion in a Potential, Stochastic Resetting, Auto-Correlation, Quadratic Cost, First-Passage TimeAbstract
We consider a diffusive particle subjected to non-static resettings, i.e. the resetting positions vary with time. The particle is also immersed in a time-dependent potential field which is not affected by the resettings. We exhibit new results concerning the moments and the auto-correlation of the process. We observe that a positive correlation always exists between past and future. Moreover, we discuss the cost that is needed to keep restarting the process until a defined task is performed. Furthermore, we give examples of the process behaviour in various situations by means of either analytical results or computational simulations, verifying an important relation between the potential and the resetting function. In particular, the examples indicate that the existence of the potential field may hinder the accomplishement of a task, even in the presence of resetting.
Downloads
Metrics
References
M. R. Evans and S. N. Majumdar, “Diffusion with Optimal Resetting”, J. Phys. A: Math. Theor. 44, 435001, 2011.
M. R. Evans and S. N. Majumdar, “Diffusion with Stochastic Resetting”, Physical Review Letters 106, 160601, 2011.
B. Besga, A. Bovon, A. Petrosyan, S. N. Majumdar and S. Ciliberto, “Optimal mean first-passage time for a Brownian searcher subjected to resetting: Experimental and theoretical results”, Phys. Rev. Research 2(3), 032029, 2020. https://link.aps.org/doi/10.1103/PhysRevResearch.2.032029
O. Tal-Friedman, A. Pal, A. Sekhon, S. Reuveni and Y. Roichman, “Experimental realization of diffusion with stochastic resetting”, J. Phys. Chem. Lett. 11(17), 7350–7355, 2020. http://dx.doi.org/10.1021/acs.jpclett.0c02122
S. Reuveni, M. Urbakh and J. Klafter, “Role of substrate unbinding in Michaelis-Menten enzymatic reactions”, Proc. Natl. Acad. Sci. 111(12), 4391–4396, 2014.
A. M. Ramoso, J. A. Magalang, D. Sa´nchez-Taltavull, J. P. Esguerra and ´E Rolda´n, “Stochastic resetting antiviral therapies prevent drug resistance development”, EPL 132(5), 50003, 2020. https://iopscience.iop.org/article/10.1209/0295-5075/132/50003/meta
T. T. Da Silva and M. D. Fragoso, “Diffusion with stochastic resetting of interacting particles emerging from a model of population genetics”, J. Phys. A: Math. Theor. 55(14003), pp. 1–28, 2022.
R. Poghosyan, V. Suvorov, R. Zadourian and D. B. Saakian, “The Non-perturbative Phenomenon for the Crow Kimura Model with Stochastic Resetting”, J. Phys. Soc. Jpn., 92
(12), 124801, 2023. https://doi.org/10.7566/JPSJ.92.124801
M. Montero, J. Perello´ and J. Masoliver, “Valuing the distant future under stochastic resettings: the effect on discounting”, J. Phys. A: Math. Theor. 55(46), 464001, 2022.
https://iopscience.iop.org/article/10.1088/1751-8121/ac9f8a/meta
V. Stojkoski, P. Jolakoski, A. Pal, T. Sandev, L. Kocarev and R. Metzler, “Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity”, Philos. Trans. A Math. Phys. Eng. Sci. 380(2224), 20210157, 2022. http://dx.doi.org/10.1098/rsta.2021.0157
M. R. Evans, S. N. Majumdar and G. Schehr, “Stochastic Resetting and Applications”, J. Phys. A: Math. Theor. 53, 193001, 2020. http://dx.doi.org/10.1088/1751-8121/ab7cfe
S. Gupta and A. M. Jayannavar, “Stochastic resetting: A (very) brief review”, Front. Phys., 10, 789097, 2022. http://dx.doi.org/10.3389/fphy.2022.789097
S. Ahmad, I. Nayak,A. Bansal, A. Nandi and D. Das, “First passage of a particle in a potential under stochastic resetting: A vanishing transition of optimal resetting rate”, Phys. Rev. E 99, 022130, 2019.
A. Pal, “Diffusion in a potential landscape with stochastic resetting”, Physical Review E 91(012113), pp. 1–7, 2015.
M. A. F. Dos Santos, “Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic Resetting”, Physics 1, pp. 40 – 58, 2019. doi:10.3390/physics1010005
J. Q. Toledo-Marin, D. Boyer and F. J. Sevilla, “Predator-prey Dynamics: chasing by stochastic resetting”, Arxiv, 2019. http://arxiv.org/abs/1912.02141
J. Q. Toledo-Marin and D. Boyer, “First passage time and information of a one-dimensional Brownian particle with stochastic resetting to random positions”, Physica A: Statistical Mechanics and its Applications, 625, 129027, 2023. doi: 10.1016/j.physa.2023.129027
T. T. Da Silva, T. T., “On a Diffusion which Stochastically Restarts from Moving Random Spatial Positions: a Non-renewal Framework”, J. Phys. A: Math. Theor., 56(49), 495004, 2023. http://dx.doi.org/10.1088/1751-8121/ad09ed
S. Reuveni, “Optimal Stochastic Restart Renders Fluctuations in First Passage Times Universal”, Phys. Rev. Lett., 116, 170601, 2016. http://dx.doi.org/10.1103/PhysRevLett.116.170601
J. C. Sunil, R. A. Blythe, M. R. Evans and S. N. Majumdar, “The cost of stochastic resetting”, J. Phys. A: Math. Theor. 56(39), 395001, 2023. https://iopscience.iop.org/article/10.1088/1751-8121/acf3bb/meta
V. Stojkoski, T. Sandev, L. Kocarev and A. Pal, “Autocorrelation functions and ergodicity in diffusion with stochastic resetting”, J. Phys. A: Math. Theor. 55, 104003, 2022. https://doi.org/10.1088/1751-8121/ac4ce9
S. N. Majumdar and G. Oshanin, “Spectral content of fractional Brownian motion with stochastic reset”, J. Phys. A Math. Gen., 51, 435001, 2018. http://dx.doi.org/10.1088/1751-8121/aadef0
D. Vinod, A. Cherstvy, R. Metzler and I. Sokolov, “Time-averaging and Nonergodicity of Reset Geometric Brownian Motion with Drift”, Phys. Rev. E, 106, 034137, 2022.
https://link.aps.org/doi/10.1103/PhysRevE.106.034137
E. Barkai and R. Flaquer-Galm´es and V. M´endez, “Ergodic properties of Brownian motion under stochastic resetting”, Phys. Rev. E, 108, 064102, 2023.
http://dx.doi.org/10.1103/PhysRevE.108.064102
M. Bachar, J. J. Batzel and S. Ditlevsen, Stochastic Biomathematical Models: with Applications to Neuronal Modeling, Springer, 2012.
J. M. Meylahn, S. Sabhapandit and H. Touchette, “Large deviations for Markov processes with resetting”, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 92 (6), 062148, 2015.
http://dx.doi.org/10.1103/PhysRevE.92.062148
C. Jarzynski, “Nonequilibrium Equality for Free Energy Differences”, Phys. Rev. Lett., 78(14), pp. 2690–2693, 1997. https://link.aps.org/doi/10.1103/PhysRevLett.78.2690
D. Gupta, C. A. Plata and A. Pal, “Work Fluctuations and Jarzynski Equality in Stochastic Resetting”, Phys. Rev. Lett.,124(11), 110608, 2020.
http://dx.doi.org/10.1103/PhysRevLett.124.110608
A. Bain and D. Crisan, Fundamentals of Stochastic Filtering, Springer: New York, 2009. https://link.springer.com/book/10.1007/978-0-387-76896-0
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional