Characterization of a continuous phase transition in a chaotic system
DOI:
https://doi.org/10.22481/intermaths.v4i2.14219Keywords:
Diffusion, Phase transition, Critical exponentsAbstract
We discuss a scaling invariance for chaotic diffusion in a transition from integrability
to nonintegrability in a class of dynamical systems described by a two-dimensional, nonlinear,
and area-preserving mapping. The variables describing the system are the action I and the angle θ, which have the property of diverging in the limit of vanishingly action. The phase transition is controlled by a parameter ϵ. A scaling invariance observed for the average squared action along the chaotic sea proves that the transition observed from integrability to nonintegrability is equivalent to a second order and is therefore called a continuous phase transition. A clear signature of this is to the fact that the order parameter approaches zero simultaneously, and the response of the order parameter to the variation of the control parameter (susceptibility) diverges.
Downloads
Metrics
References
A. J. Lichtenberg, M. A. Lieberman, Regular and chaotic dynamics (Appl. Math. Sci.) 38, Springer Verlag, New York, (1992)
R. K. Patria, Statistical Mechanics, Elsevier (2008)
F. Reif, Fundamentals of statistical and thermal physics, New York: McGraw-Hill, (1965)
V. Balakrishnan, Elements of nonequilibrium statistical mechanics, Ane Books India, New Delhi (2008)
G. J. Sussman, J. Wisdom, and M. E. Mayer, Structure and Interpretation of Classical Mechanics, MIT Press, Cambridge (2001)
E. D. Leonel, J. A. de Oliveira, F. Saif, J. Phys. A, 44, 302001 (2011)
S. A. Holgate, Understanding Solid State Physics, CRC Press, Boca Ratom, Florida-USA (2010).
J. P. Eckmann, D. Ruelle, Rev. Mod. Phys., 57 617 (1985).
E. D. Leonel, J. Penalva, R. M. N. Teixeira, R. N. Costa Filho, M. R. Silva, J. A. de Oliveira, Phys. Lett. A, 379, 1808 (2015).
E. D. Leonel, C. M. Kuwana, J. Stat. Phys. 170, 69 (2018)
J. Cardy, Scaling and Renormalization in Statistical Physics. Cambridge University Press, 1996.
L. P. Kadanoff, Statistical Physics: Statics, Dynamics and Renormalization. World Scientific, Singapore, 1999.
R. Aguilar-Sanchez, E. D. Leonel, and J. A. Mendez-Bermudez. Phys. Lett. A 377, 3216 (2013).
E. D. Leonel, L. A. Bunimovich, Phys. Rev. Lett. 104, 224101 (2010).
D. F. M. Oliveira, E. D. Leonel, Phys. Lett. A 374, 3016 (2010).
F. Lenz, F. K. Diakonos, and P. Schmelcher, Phys. Rev. Lett. 100, 014103 (2008).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2023 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional