Center of Mass in Point Configurations: Explorations with GeoGebra
DOI:
https://doi.org/10.22481/intermaths.v5i1.14476Keywords:
Center of mass, Two variable function, GeoGebra, MathematicsAbstract
The localization of the center of mass of a finite set of point masses can be achieved by minimizing a polynomial function of degree 2 using the least squares method. Considering a finite set of point masses in the plane, this article explores, in some particular situations, the effect that changes in the configuration of the points cause both on the center of mass of the new configuration and on the minimum value of the polynomial function associated with that configuration. In each case, the mathematical details are presented with illustrations, interactive links from GeoGebra, and dynamic color elements, inserted to emphasize visualization and illustrate the relationship of the center of mass as the minimum of a two-variable function using contour plots combined with color scales. The results encompass the visualization of the particle system with randomness in the positions and masses of the particles, the analysis of some cases of displacements of the center of mass and their associated functions, as well as the influence of the masses on the minimum values of these functions. In general, the visualization of mathematical elements, facilitated by the use of GeoGebra, highlights details and fundamental aspects of the problems interactively, allowing observation and analysis.
Downloads
Metrics
References
ARFKEN, George B.; GRIFFING, David F.; KELLY, Donald C.; PRIEST, Joseph. chapter 10 - MANY-PARTICLE SYSTEMS. In: George B. Arfken; David F. Griffing; Donald C. Kelly; Joseph Priest (Eds.). International Edition University Physics. Academic Press, 1984, pp. 190-210. ISBN: 978-0-12-059858-8. DOI: https://doi.org/10.1016/B978-0-12-059858-8.50015-7.
AWREJCEWICZ, Jan. Geometry of Masses. In: Classical Mechanics: Kinematics and Statics. New York, NY: Springer New York, 2012. p. 131--185. ISBN 978-1-4614-3791-8. DOI: 10.1007/978-1-4614-3791-8_3. Disponível em: https://doi.org/10.1007/978-1-4614-3791-8_3.
ANDRESCU, T., MUSHKAROV, O., STOYANOV, L., Geometric Problems on Maxima and Minima, Birkhauser, 2006.
HALL, J., LINGEFJARD, T. Mathematical Modeling: Applications with GeoGebra, New Jersey: John Wiley & Sons, 2017.
LOSADA R., El color dinâmico de GeoGebra, La Gaceta de la RSME, v. 17, n. 3, p. 525-547, 2014.
SANTOS, J. P. M; FIRMIANO, A.; LÓPEZ LINARES, J.; RAMALHO, M. P. O. Diferentes perspectivas de um problema de otimização: Matemática Dinâmica com GeoGebra. INTERMATHS, v. 3, n. 1, p. 70-87, 2022. DOI: https://doi.org/10.22481/intermaths.v3i1.10227.
SANTOS, J. P. M.; LIMA, M. V. de A.; JESUS, A. F. de; LINARES, J. L. Minimização da soma de quadrados de distâncias aos vértices em polígonos convexos. INTERMATHS, v. 3, n. 2, p. 66-82, 2022. DOI: https://doi.org/10.22481/intermaths.v3i2.11309.
Palacios-Vélez, Ó.L., Pedraza-Oropeza, F.J.A., Escobar-Villagran, B. S., An algebraic approach to finding the Fermat–Torricelli point, International Journal of Mathematical Education in Science and Technology, v. 46, n. 8, p.1252-1259, 2015. DOI:10.1080/0020739X.2015.1036947.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional