Application of geometric programming on water quality management
DOI:
https://doi.org/10.22481/intermaths.v5i2.15261Keywords:
Geometric Programming, Convex Analysis, Nonlinear Programming, Water QualityAbstract
Geometric Programming is a technique used to solve nonlinear programming algebraic problems. Geometric Programming problems do not present as convex on their standard form, but they can be reformulated to a convex form by applying a change of variables. Algorithms used to solve geometric problems have been improved and are powerful tools to solve important problems on engineering. The objective of this work is to apply Geometric Programming to a model that makes it possible to evaluate the contribution of pollution reduction techniques in water treatment stations, using a computational method to find optimal solutions.
Downloads
Metrics
References
OLIVEIRA, R. M. "Algoritmos de busca global para problemas de otimização geométricos e multiplicativos". Tese (Doutorado em Engenharia Elétrica) – Faculdade de Engenharia Elétrica e de Computação, Universidade Estadual de Campinas. Campinas, SP, 2005. https://doi.org/10.47749/T/UNICAMP.2005.360663
MCNAMARA, J. R. "An optimization model for regional water quality management". Water Resources Research, v. 12, n.2, p. 125-134, 1976. DOI: https://doi.org/10.1029/WR012i002p00125
IZMAILOV, A.; SOLODOV, M. Otimização - volume 1: condições de otimalidade, elementos de análise convexa e de dualidade. 3ª ed. Rio de Janeiro: IMPA, 2014.
GARCIA, R. F. "Funções convexas no R^2 e introdução à otimização biobjetivo". Dissertação (Mestrado Profissional em Matemática) – Instituto de Matemática, Universidade Federal de Mato Grosso do Sul. Campo Grande, MS, 2019. Disponível em: https://posgraduacao.ufms.br/portal/trabalho-arquivos/download/7037. Acesso em: 09 de jan. de 2024.
LIMA, E. L. Análise real. 6. ed. Rio de Janeiro: IMPA, 2016. v. 2.
BOYD, S.; VANDERBERGHE, L. Convex optimization. 1. ed. Nova York: Cambridge University Press, 2004. Disponível em: https://web.stanford.edu/~boyd/cvxbook/. Acesso em: 16 de jun. de 2023.
BECKENBACH, E. F.; BELLMAN, R. Inequalities. 1. ed. Berlim: Springer, 1961.
RIJCKAERT, M. J.; MARTENS, X. M. "Comparison of generalized geometric programming algorithms". Journal of Optimization Theory and Applications, v. 26, p. 205-242, 1978. https://doi.org/10.1007/BF00933404
NASCIMENTO, R. Q.; OLIVEIRA SANTOS, R. M.; MACULAN, N. "A global interior point method for nonconvex geometric programming". Optimization and Engineering, p. 1-31, 2023. https://doi.org/10.1007/s11081-023-09815-x
GREENBERG, Harvey J. "Mathematical programming models for environmental quality control". Operations Research, v. 43, n. 4, p. 578-622, 1995. https://doi.org/10.1287/opre.43.4.578
VALENTE, J. P. S.; PADILHA, P. M.; SILVA, A. M. M. "Oxigênio dissolvido (OD), demanda bioquímica de oxigênio (DBO) e demanda química de oxigênio (DQO) como parâmetros de poluição no ribeirão Lavapés/Botucatu-SP". Eclética Química, v. 22, p. 39-66, 1997. https://doi.org/10.1590/S0100-46701997000100005
ALVES, Pedro H. A.; SANTOS, Rúbia M. O. "Programação Geométrica na Gestão de Qualidade da Água". Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, v. 10, n. 1, 2023.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Intermaths
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional