Subcubic Algorithms for Matrix Multiplication
DOI:
https://doi.org/10.22481/intermaths.v5i2.15416Keywords:
Matrices., Strassen., Strassen-WinogradAbstract
This paper presents the results of the bibliographic research and use of computational environments on Algorithmic Complexity. In the first part, we address some properties of matrix multiplication, in addition to presenting the simple divide and conquer algorithm. In the second part of the paper, we present the results and discussions with emphasis mainly on the Winograd algorithm and Strassen algorithm for matrix multiplication.
Downloads
Metrics
References
bibitem{cormen2009introduction} CORMEN, Thomas H.; LEISERSON, Charles E.; RIVEST, Ronald L.; STEIN, Cliford. textbf{Introduction to algorithms.} 3.ed. MIT press, 2022.
bibitem{knuth2014art} KNUTH, Donald E. textbf{The Art of Computer Programming: Seminumerical Algorithms}, Volume 2. Addison-Wesley Professional, 2014.
bibitem{saa3} SAA, Alberto. textbf{Algoritmos subc´ubicos para multiplica¸c~ao matricial}. Campinas, SP: IMECC, 2023. Disponível em: https://vigo.ime.unicamp.br/mt404/EP3.pdf. Acesso em: 06 out. 2023.
bibitem{strassen} STRASSEN, Volker. Gaussian elimination is not optimal. textbf{Numerische mathematik}, v. 13, n. 4, p. 354-356, 1969.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Intermaths
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional