EDUCATE ACTION WITH SCIENCE: FOR A BRAZILIAN SOCIETY OF TEACHING AND RESEARCH IN ARTIFICIAL INTELLIGENCE AND SCIENTIFIC LITERACY

Authors

DOI:

https://doi.org/10.22481/reed.v3i7.10336

Keywords:

Scientific Literacy, Artificial intelligence, Science

Abstract

Advances in artificial intelligence (AI) have brought new opportunities and challenges for researchers to deal with complex and uncertain problems and systems that could not be solved by traditional methods. Traditional approaches developed for mathematically well-defined problems with accurate models may lack autonomy and decision-making capacity in uncertain and nebulous environments. This work aims, based on bibliographic research, to present AI in order to reveal its comprehensiveness, scientific nature and its applicability in the contexts of scientific literacy. Contemplate the complexity of both as positive ways in multiple areas of scientific research and developments in teaching and learning processes. Here we intend to reveal the urgent need to create and organize a “Brazilian society for research in artificial intelligence and scientific literacy” (SBPIALC). The research revealed a certain scarcity of published works on the use of AI in scientific literacy when compared to the number of works found on AI in education. However, AI is able to be an integral part of the activities of researchers, teachers and students in the production of knowledge and scientific literacy due to its ability to collect and analyze big data of information.

Downloads

Download data is not yet available.

Author Biography

Antonio Luiz de Almeida, uneb

Licenciado em Física pela Universidade Federal Rural do Rio de Janeiro (UFRRJ). Mestrado/Doutorado em Química Quântica pelo Centro Brasileiro de Pesquisas Físicas (CBPF). Professor da Universidade do Estado da Bahia (UNEB), Departamento de Ciências Exatas e da Terra, Campus I (DCET-I).

References

ACEVEDO, J. A., VÁZQUEZ, A. & MANASSERO M. A. (2003) Papel de la educación CTS en una alfabetización científica y tecnológica para todas las personas. Revista Electrónica de Enseñanza de las Ciencias. v.2 n. 2. Disponível em: http://www.saum.uvigo.es/reec/volumenes/ volumen2/ Acesso em: 18 ago. 2004.

ALICE, P. The Impact of Artificial Intelligence on Global Trends. Journal of Multidisciplinary Developments. v. 1, n. 1, p. 21-37, 2016. Disponível em: https://www.researchgate.net/profile/Alice-Pavaloiu/publication/325398084_The_Impact_of_Artificial_Intelligence_on_Global_Trends/links/5b0bd55ba6fdcc8c2534cfc1/The-Impact-of-Artificial-Intelligence-on-Global-Trends.pdf. Acesso em: 18 ago. 2006.

ALLCOTT, Hunt; GENTZKOW, Matthew. Social media and fake news in the 2016 election. Journal of economic perspectives, v. 31, n. 2, p. 211–36, 2017. Disponível em: https://web.stanford.edu/~gentzkow/research/fakenews.pdf. Acesso em 02 fev. 2022.

ALMEIDA, Beatriz Oliveira; ALVES, Lynn Rosalina Gama. Letramento digital em tempos de COVID-19: uma análise da educação no contexto atual. Debates em Educação, v. 12, n. 28, p. 1-18, 2020. Disponível em: https://www.seer.ufal.br/index.php/debateseducacao/article/view/10282. Acesso em: 01 dez. 2020.

ANCKAERT, Bertrand; MADOU, Matias; BOSSCHERE, Koen De. A model for self-modifying code. In: International Workshop on Information Hiding. Springer, Berlin, Heidelberg, 2006. p. 232-248.

ANSEL, Jason et al. Language-independent sandboxing of just-in-time compilation and self-modifying code. In: Proceedings of the 32nd ACM SIGPLAN Conference on Programming language design and implementation. 2011. p. 355-366.

AYOUB, D. Unleashing the power of AI for education. MIT Technology Review, 2020. Disponível em: https://www.technologyreview.com/2020/03/04/905535/unleashing-the-power-of-ai-foreducation/. Acesso em: 25 dez. 2021.

BANSAL, Gagan et al. Beyond accuracy: The role of mental models in human-AI team performance. In: Proceedings of the AAAI Conference on Human Computation and Crowdsourcing. 2019. p. 2-11.

BODKER, Susanne. Scenarios in user-centred design-setting the stage for reflection and action. In: Proceedings of the 32nd Annual Hawaii International Conference on Systems Sciences. 1999. HICSS-32. Abstracts and CD-ROM of Full Papers. IEEE, 1999. p. 11 pp.

BENGIO, Yoshua et al. Learning deep architectures for AI. Foundations and Trends in Machine Learning, v. 2, n. 1, p. 1–127, 2009. Disponível em: https://www.iro.umontreal.ca/~lisa/pointeurs/TR1312.pdf. Acesso em: 01 abr. 2020.

BLANCHARD, G, BOUSQUET, O., MASSART, P., Statistical performance of Support Vector Machines. Technical Report, 2004.

BORDES, A.; USUNIER, N.; CHOPRA, S.; WESTON, J. Large-scale Simple Question Answering with Memory Networks. 2015. Disponível em: https://arxiv.org/abs/1506.02075. Acesso em 01 jan. 2021.

BOUCHERON, Stéphane; BOUSQUET, Olivier; LUGOSI, Gábor. Theory of classification: A survey of some recent advances. ESAIM: probability and statistics, v. 9, p. 323-375, 2005. Disponível em: https://www.cambridge.org/core/journals/esaim-probability-and-statistics/article/abs/theory-of-classification-a-survey-of-some-recent-advances/42A9912D17169A650AB06244820464BC. Acesso em: 09 set. 2020.

BRDYS, M. and G. Kulawski, Dynamic neural controllers for induction motor. IEEE Transactions on Neural Networks, v. 10, n. 2, p. 340– 355, 1999.

BROOKS, R. A. Artificial life and real robots, in Toward a Practice of Autonomous Systems. In: Proceedings of the First European Conference on Artificial Life, MIT Press, 1999. p. 3–10.

BURESH, D. L. The January 6, 2021 Riot, the USA FREEDOM Act of 2015, Thomas Hobbes, John Locke, and Controlling the Content of Extremist Material on the Internet. International Journal of Social Science And Human Research, v. 5, n. 1, p. 167-178, 2022. Disponível em: https://ijsshr.in/v5i1/Doc/25.pdf. Acesso em: 09 fev. 2022.

CAJAS, Fernando. The science/technology interaction: Implications for science literacy. Journal of Research in Science Teaching, v. 38, n. 7, p. 715-729, 2001. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/tea.1028. Acesso em: 02 mar. 2022.

CALDAS, Max Silva; SILVA, Emanoel Costa Claudino. Fundamentos e aplicação do Big Data: como tratar informações em uma sociedade de yottabytes. Bibliotecas Universitárias: pesquisas, experiências e perspectivas, Belo Horizonte, v. 3, n. 1, p. 65-83, jan./jun. 2016. Disponível em: https://periodicos.ufmg.br/index.php/revistarbu/article/view/3086. Acesso em: 09 out. 2021.

CARNAP, Rudolf. Testability and meaning. Philosophy of science, v. 3, n. 4, p. 419-471, 1936.

CRITES, R.H., and BARTO A.G. Improving elevator performance using reinforcement learning. Advances in neural information processing systems, v. 8, p. 1017–1023, 1995.

CLUNE, Jeff. AI-GAs: AI-generating algorithms, an alternate paradigm for producing general artificial intelligence, 2019. Disponível em: https://arxiv.org/abs/1905.10985. Acesso em: 09 fev. 2022.

CUNHA, Rodrigo Bastos. Alfabetização científica ou letramento científico?: interesses envolvidos nas interpretações da noção de scientific literacy. Revista Brasileira de Educação, v. 22, p. 169-186, 2017. Disponível em: https://doi.org/10.1590/S1413-24782017226809. Acesso em: 08 ago. 2021.

DE ALMEIDA, Beatriz Oliveira et al. Lives, educação e Covid-19: Estratégias de interação na pandemia. Educação, v. 10, n. 1, p. 149-163, 2020. Disponível em: https://periodicos.set.edu.br/educacao/article/view/8926. Acesso em: 04 mai. 2021.

DIETTERICH, Thomas G.; HORVITZ, Eric J. Rise of concerns about AI: reflections and directions. Communications of the ACM, v. 58, n. 10, p. 38-40, 2015. Disponível em: https://cacm.acm.org/magazines/2015/10/192386-rise-of-concerns-about-ai/fulltext?mobile=false. Acesso em: 08 fev. 2022.

D'IGNAZIO, Catherine. Creative data literacy: Bridging the gap between the data-haves and data-have nots. Information Design Journal, v. 23, n. 1, p. 6-18, 2017. Disponível em: https://benjamins.com/catalog/idj.23.1.03dig. Acesso em: 30 jan. 2022.

DING, J. Deciphering China’s AI dream. Technical Report, Future of Humanity Institute, 2018.

DINIZ-PEREIRA, Júlio Emílio. A pesquisa dos educadores como estratégia para construção de modelos críticos de formação docente. In: DINIZ-PEREIRA, Júlio Emílio; ZEICHNER, Kenneth M. (Org.). A pesquisa na formação e no trabalho docente. Belo Horizonte: Autêntica, 2002. p. 11-42.

DODDS, Zachary; ALVARADO, Christine; SOOD, Sara Owsley. Making Research Tools Accessible for All AI Students. In: Proceedings of the AAAI, 2008. AI Education Colloquium, 2008.

DONG, Yanyan et al. Research on How Human Intelligence, Consciousness, and Cognitive Computing Affect the Development of Artificial Intelligence. Complexity, v. 2020, n. p., 2020. Disponível em: https://www.hindawi.com/journals/complexity/2020/1680845/. Acesso em: 07 mai. 2021.

DRUGA, Stefania et al. How smart are the smart toys? Children and parents' agent interaction and intelligence attribution. In: Proceedings of the 17th ACM Conference on Interaction Design and Children. ACM, 2018. p. 231-240. Disponível em: https://dl.acm.org/doi/10.1145/3202185.3202741. 08 fev. 2022.

EL MOUDEN, Mohamed et al. La Incorporación de las actitudes linguísticas y las representaciones sociales a la teoría de la argumentación de Michel Meyer. Revista Iberoamericana de Argumentación, n. 23, p. 23-42, 2022. Disponível em: https://revistas.uam.es/ria/article/view/13062. Acesso em: 06 fev. 2022.

FELTEN, E., Preparing for the Future of Artificial Intelligence. White House Office of Science and Technology Policy blog, 2016. Disponível em: https://www.whitehouse.gov/blog/2016/05/03/preparing-future-artificial-intelligence. Acesso em 20 fev. 2022.

FLAVELL, J. H. Metacognition and Cognitive Monitoring: A New-Area of Cognitive-Development Inquiry. American Pshychologist, v. 34, n. 10, p. 906- 911, 1979. Disponível em: https://psycnet.apa.org/record/1980-09388-001. Acesso em: 09 mai. 2020.

FRANZEN, Martina et al. Machine Learning in Citizen Science: Promises and Implications. The Science of Citizen Science, v. 183, n. p., 2021. Disponível em: https://repozitar.cz/publication/42166/cs/Machine-Learning-in-Citizen-Science-Promises-and-Implications/Franzen-Kloetzer-Ponti-Trojan. Acesso em: 09 set. 2021.

FREIRE, Paulo. Pedagogy of thr oppressed. New York: Herder and Herder, 1972.

GIBBONS, G. et al.The new production of knowledge. London: Sage Publications, 1994.

GONZÁLEZ, Antonio et al. Anxiety in the statistics class: Structural relations with self-concept, intrinsic value, and engagement in two samples of undergraduates. Learning and Individual Differences, v. 45, p. 214-221, 2016. Disponível em: https://daneshyari.com/article/preview/364522.pdf. Acesso em: 09 fev. 2021.

GOTT, R.; DUGGAN, S. A framework for practical work in science and scientific literacy through argumentation. Research in science & technological education, v. 25, n. 3, p. 271-291, 2007. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/02635140701535000. Acesso em: 09 out. 2021.

GRAHAM, Steve et al. Teaching Elementary School Students to Be Effective Writers: A Practice Guide. NCEE 2012-4058. What Works Clearinghouse, 2012.

HACKER, R. G.; HARRIS, Melanie. Adult learning of science for scientific literacy: Some theoretical and methodological perspectives. Studies in the Education of Adults, v. 24, n. 2, p. 217-224, 1992. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/02660830.1992.11730574. Acesso em: 29 fev. 2020.

KAPLAN, Andreas; HAENLEIN, Michael. Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence. Business Horizons, v. 62, n. 1, p. 15-25, 2019. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0007681318301393. Acesso em: 01 jan. 2020.

KORF, Richard E. Real-time heuristic search. Artificial intelligence, v. 42, n. 2-3, p. 189-211, 1990. Disponível em: https://www.sciencedirect.com/science/article/abs/pii/0004370290900544. Acesso em: 31 dez. 2020.

KRASILNIKOV, Pavel V.; TABOR, Joe A. Perspectives on utilitarian ethnopedology. Geoderma, v. 111, n. 3-4, p. 197-215, 2003. Disponível em: https://arizona.pure.elsevier.com/en/publications/perspectives-on-utilitarian-ethnopedology. Acesso em: 19 abr. 2020.

LINGARD, Bob; RAWOLLE, Shaun. Mediatizing educational policy: The journalistic field, science policy, and cross‐field effects. Journal of education policy, v. 19, n. 3, p. 361-380, 2004. Disponível em: https://www.tandfonline.com/doi/abs/10.1080/0268093042000207665. Acesso em: 23 mai. 2020.

MAVROGIANNOPOULOS, Nikos; KISSERLI, Nessim; PRENEEL, Bart. A taxonomy of self-modifying code for obfuscation. Computers & Security, v. 30, n. 8, p. 679-691, 2011. Disponível em: https://dl.acm.org/doi/abs/10.1016/j.cose.2011.08.007. Acesso em: 09 abr. 2021.

MCCARTHY, John. Generality in artificial intelligence. Communications of the ACM, v. 30, n. 12, p. 1030-1035, 1987. Disponível em: https://dl.acm.org/doi/abs/10.1145/33447.33448. Acesso em: 08 mai. 2020.

MCEWAN, Elaine K. Seven strategies of highly effective readers: using cognitive research to boost K-8 achievement. Corwin press, 2004.

MICHAEL J. The nature of intrinsic value. Rowman & Littlefield Publishers, 2001.

MICHAEL L. et al. Gathering Strength, Gathering Storms: The One Hundred Year Study on Artificial Intelligence (AI100) 2021 Study Panel Report. Stanford: University of Stanford, 2021.

MILLER, J. D. The measurement of civic scientific literacy. Public understanding of science, v. 7, n. 3, p. 203, 1998. Disponível em: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.685.3691&rep=rep1&type=pdf. Acesso em: 01 abr. 2020.

NELSON, G. D. Science literacy for all in the 21st century. Educational leadership, v. 57, n. 2, p. 14-17, 1999. Disponível em: https://eric.ed.gov/?id=EJ594869. Acesso em: 08 ago. 2021.

NILSSON, N. J. The quest for artificial Intelligence. Cambridge: Cambridge University Press 2009.

OSBORNE, Jonathan F.; PATTERSON, Alexis. Scientific argument and explanation: A necessary distinction?. Science Education, v. 95, n. 4, p. 627-638, 2011. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/sce.20438. Acesso em: 01 mai. 2021.

PRIEST, Susanna. Critical science literacy: What citizens and journalists need to know to make sense of science. Bulletin of Science, Technology & Society, v. 33, n. 5-6, p. 138-145, 2013. Disponível em: https://journals.sagepub.com/doi/abs/10.1177/0270467614529707. Acesso em: 09 fev. 2021

RIEDL, Mark O. Human‐centered artificial intelligence and machine learning. Human Behavior and Emerging Technologies, v. 1, n. 1, p. 33-36, 2019. Disponível em: https://onlinelibrary.wiley.com/doi/abs/10.1002/hbe2.117. Acesso em: 01 jan. 2020.

RIGDON, Mary, Introduction to Cognitive Science, 2017. Disponível em: https://ruccs.rutgers.edu/academics/undergraduate/syllabi/1-201-intro-syllabus/file. Acesso em: 03 mai. 2020.

ROBERTS, Douglas A.; BYBEE, Rodger W. Scientific literacy, science literacy, and science education. In: LEDERMAN, Norman G.; ABELL, Sandra K. (Ed.). Handbook of research on science education, volume II. Routledge, 2014. p. 559-572.

ROGERS, Yvonne; ELLIS, Judi. Distributed cognition: an alternative framework for analysing and explaining collaborative working. Journal of information technology, v. 9, n. 2, p. 119-128, 1994. Disponível em: http://www.douri.sh/classes/ics234bs03/14-RogersEllis-DistCog.pdf. Acesso em: 09 abr. 2020.

SHANNON, Patrick. Some objective factors in teachers' reliance on commercial reading materials. Reading Improvement, v. 19, n. 4, p. 296, 1982. Disponível em: http://www.personal.psu.edu/kej1/APLNG_493/old_site/shannon.pdf. Acesso em: 01 abr. 2020.

SIMON, H. Cognitive Science: Relationship of AI to Psychology and Neuroscience. AAAI, 2010.

SOLOMONOFF, Ray. The application of algorithmic probability to problems in artificial intelligence. In: Machine Intelligence and Pattern Recognition. North-Holland, 1986. p. 473-491.

STONE, Peter et al. Artificial intelligence and life in 2030: the one hundred year study on artificial intelligence. Report, 2016. Disponível em: https://ai100.stanford.edu/2016-report. Acesso em: 01 dez. 2020.

TIPPETT, Christine. Argumentation: The language of science. Journal of Elementary Science Education, v. 21, n. 1, p. 17-25, 2009. Disponível em: https://www.jstor.org/stable/43155841. Acesso em 09 fev. 2022.

WEST, Doug. Charles Babbage: Grandfather of the Modern Computer. 2022. Disponível em: https://owlcation.com/humanities/Charles-Babbage-Grandfather-of-the-Modern-Computer. Acesso em: 06 mar. 2022.

WINOGRAD, Terry. Shifting viewpoints: Artificial intelligence and human–computer interaction. Artificial intelligence, v. 170, n. 18, p. 1256-1258, 2006. Disponível em: https://www.sciencedirect.com/science/article/pii/S0004370206000920. Acesso em: 04 abr. 2021.

YAN, Keyu. A Review of the Development and Applications of Number Theory. In: Journal of Physics: Conference Series. IOP Publishing, 2019. p. 012128. Disponível em: https://iopscience.iop.org/article/10.1088/1742-6596/1325/1/012128/pdf. Acesso em: 11 mai. 2020.

ZHAO, Ningfeng et al. Metacognition: An effective tool to promote success in college science learning. Journal of College Science Teaching, v. 43, n. 4, p. 48-54, 2014. Disponível em: https://eric.ed.gov/?id=EJ1041386. Acesso em: 09 abr. 2020.

Published

2022-03-31

How to Cite

Almeida, A. L. de. (2022). EDUCATE ACTION WITH SCIENCE: FOR A BRAZILIAN SOCIETY OF TEACHING AND RESEARCH IN ARTIFICIAL INTELLIGENCE AND SCIENTIFIC LITERACY. Revista De Estudos Em Educação E Diversidade - REED, 3(7), 1-27. https://doi.org/10.22481/reed.v3i7.10336

Issue

Section

Dossiê Temático