Uma Nota sobre a sequência dos números repunidades

Autores

DOI:

https://doi.org/10.22481/intermaths.v5i1.14922

Palavras-chave:

Potências perfeitas, Sequência do Tipo Horadam, Sequência repunidade, Identidade de Tagiuri-Vajda

Resumo

Neste artigo, investigamos as identidades clássicas da sequência repunit com índices inteiros à luz das propriedades das sequências do tipo Horadam. Destacamos particularmente a Identidade de Tagiuri-Vajda e a Identidade de Gelin-Cesàro. Além disso, provamos que nenhuma repunidade é uma potência perfeita, seja par ou ímpar. Finalmente, abordamos um critério de divisibilidade para os termos de repunit rn por um primo p e suas potências.

Downloads

Não há dados estatísticos.

Metrics

Carregando Métricas ...

Referências

A. F. Horadam. ``A generalized Fibonacci sequence." The American Mathematical Monthly, v. 68, n. 5, p. 455--459, 1961.

A. F. Horadam. ``Basic properties of a certain generalized sequence of numbers", The Fibonacci Quart., v. 3, n. 3, p. 161--176, 1965.

G. Cerda. ``Matrix methods in Horadam sequences". Boletín de Matemáticas, v. 19, n. 2, p. 97--106, 2012.

N. J. A. Sloane. The on-line encyclopedia of integer sequences, http://oeis.org/A002275.

D. C. Santos; E. A. Costa. ``Um passeio pela sequência repunidade". CQD-Revista Eletrônica Paulista de Matemática, p. 241-254, 2023. https://doi.org/10.21167/cqdv23n1ic2023241254

J. H. Jaroma. ``Factoring Generalized Repunits". Bulletin of the Irish Mathematical Society, n. 59, p. 29-35. 2007

D. Kalman; R. Mena. ``The Fibonacci numbers-exposed". Mathematics magazine, v. 76, n. 3, p. 167-181, 2003.

K. H. Rosen. Discrete mathematics and its applications. The McGraw Hill Companies, 2007.

A. H. Beiler. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. 2. ed. Dover. 1966.

E. A. Costa; D. C. Santos. ``Algumas propriedades dos números Monodígitos e Repunidades". Revista de Matemática da UFOP, v. 2, p. 47-58, 2022.

E. A. Costa; D. C. Santos; F. S. Monteiro; V. M. A. Souza. ``On the repunit sequence at negative indices". Revista de Matemática da UFOP, v. 1, p. 1-12, 2024. https://doi.org/10.5281/zenodo.11062161

L. Maohua. ``A note on perfect powers of the form x^{m-1} +...+x+1". Acta Arithmetica. Vol. 69, n. 1, p. 91-98, 1995.

T. Müler . ``Note on the diophantine equation 1 + 2 p + (2 p)^2 +...+(2 p)^n = y^p". Elem. Math.. Vol. 60, p. 148-149. 2005. https://ems.press/content/serial-article-files/7121

S. Yates. ``The Mystique of Repunits". Mathematics Magazine. v. 51, n. 1, p. 22-28, 1978. https://doi.org/10.1080/0025570X.1978.11976671

I. Niven; H.S. Zuckerman; H. L. Montegomery. An introduction to the theory of numbers / . John Wiley and Sons. 1991.

Downloads

Publicado

2024-06-30

Como Citar

Santos, D. C., & Costa, E. A. (2024). Uma Nota sobre a sequência dos números repunidades. Intermaths, 5(1), 54-66. https://doi.org/10.22481/intermaths.v5i1.14922

Edição

Seção

Artigos