A note on repunit number sequence
DOI:
https://doi.org/10.22481/intermaths.v5i1.14922Keywords:
Horadan-type sequence, Perfect power, Repunit sequence, Tagiuri-Vajda IdentityAbstract
In this paper, we investigate the classical identities of the repunit sequence with integer indices in light of the properties of Horadan-type sequences. We highlight particularly the Tagiuri-Vajda Identity and Gelin-Cesàro Identity. Additionally, we prove that no repunit is a perfect power, either even or odd. Finally, we address a divisibility criterion for the terms of repunit rn by a prime p and its powers.
Downloads
Metrics
References
A. F. Horadam. ``A generalized Fibonacci sequence." The American Mathematical Monthly, v. 68, n. 5, p. 455--459, 1961.
A. F. Horadam. ``Basic properties of a certain generalized sequence of numbers", The Fibonacci Quart., v. 3, n. 3, p. 161--176, 1965.
G. Cerda. ``Matrix methods in Horadam sequences". Boletín de Matemáticas, v. 19, n. 2, p. 97--106, 2012.
N. J. A. Sloane. The on-line encyclopedia of integer sequences, http://oeis.org/A002275.
D. C. Santos; E. A. Costa. ``Um passeio pela sequência repunidade". CQD-Revista Eletrônica Paulista de Matemática, p. 241-254, 2023. https://doi.org/10.21167/cqdv23n1ic2023241254
J. H. Jaroma. ``Factoring Generalized Repunits". Bulletin of the Irish Mathematical Society, n. 59, p. 29-35. 2007
D. Kalman; R. Mena. ``The Fibonacci numbers-exposed". Mathematics magazine, v. 76, n. 3, p. 167-181, 2003.
K. H. Rosen. Discrete mathematics and its applications. The McGraw Hill Companies, 2007.
A. H. Beiler. Recreations in the Theory of Numbers: The Queen of Mathematics Entertains. 2. ed. Dover. 1966.
E. A. Costa; D. C. Santos. ``Algumas propriedades dos números Monodígitos e Repunidades". Revista de Matemática da UFOP, v. 2, p. 47-58, 2022.
E. A. Costa; D. C. Santos; F. S. Monteiro; V. M. A. Souza. ``On the repunit sequence at negative indices". Revista de Matemática da UFOP, v. 1, p. 1-12, 2024. https://doi.org/10.5281/zenodo.11062161
L. Maohua. ``A note on perfect powers of the form x^{m-1} +...+x+1". Acta Arithmetica. Vol. 69, n. 1, p. 91-98, 1995.
T. Müler . ``Note on the diophantine equation 1 + 2 p + (2 p)^2 +...+(2 p)^n = y^p". Elem. Math.. Vol. 60, p. 148-149. 2005. https://ems.press/content/serial-article-files/7121
S. Yates. ``The Mystique of Repunits". Mathematics Magazine. v. 51, n. 1, p. 22-28, 1978. https://doi.org/10.1080/0025570X.1978.11976671
I. Niven; H.S. Zuckerman; H. L. Montegomery. An introduction to the theory of numbers / . John Wiley and Sons. 1991.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional