Um Convite ao Estudo da Teoria das Categorias

Authors

DOI:

https://doi.org/10.22481/intermaths.v2i2.10099

Keywords:

Teoria das Categorias, Pesquisa, Ensino

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

References

Baez, John C., Owen Lynch e Joe Moeller (2021). Compositional Thermostatics. arXiv: 2111.10315 [math-ph].

Baez, John C. e Mike Stay (2011). “Physics, Topology, Logic and Computation. A Rosetta Stone”. Em: New Structures for Physics. Ed. por Bob Coecke. Vol. 813. Lecture Notes in Physics. Berlin: Springer, pp. 95–174. doi: 10.1007/978-3-642-12821-9_2. arXiv: 0903.0340 [quant-ph].

Eilenberg, Samuel e Saunders MacLane (set. de 1945). “General Theory of Natural Equivalences”. Em: Transactions of the American Mathematical Society 58.2, pp. 231–294. issn: 00029947. doi: 10.2307/1990284. URL: http://www.jstor.org/stable/1990284.

Fong, Brendan e David I. Spivak (2019). Seven Sketches in Compositionality. An invitation to Applied Category Theory. Cambridge University Press. arXiv: 1803.05316 [math.CT].

MacLane, Saunders (1971). Categories for the working mathematician. Vol. 5. Graduate texts in mathematics. Berlin: Springer, 262 pages. isbn: 0387900365. URL: https://bib-pubdb1.desy.de/record/384997.

Menezes, Paulo Blauth e Edward Hermann Haeusler (2001). Teoria das Categorias para Ciência da Computação. Editora Sagra Luzzatto.

Paiva, Valeria de e Samuel G. da Silva (2021). Kolgomorov-Veloso Problems and Dialectica Categories. arXiv: 2107.07854 [math.LO].

Ribeiro, Maico Felipe Silva (2021). Teoria das Categorias para Matemáticos. uma breve introdução. SBM.

Univalent Foundations Program, The (s.d.). Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study. URL: https://homotopytypetheory.org/book.

Published

2021-12-28

How to Cite

Mariano, H. L. ., & Meleiro, J. F. . (2021). Um Convite ao Estudo da Teoria das Categorias. INTERMATHS, 2(2), 14-22. https://doi.org/10.22481/intermaths.v2i2.10099

Issue

Section

Editorial