Robust Estimation for Discrete-Time Markovian Jump Linear Systems in a Data Fusion Scenario
DOI:
https://doi.org/10.22481/intermaths.v3i1.10715Keywords:
Markovian Systems, Data Fusion, Robustness, Kalman FilterAbstract
This paper considers the problem of robust recursive estimation for discrete-time Markovian jump linear systems in both weighted and probabilistic data fusion scenarios. The problem is stated in terms of the optimization of an appropriate quadratic functional in a data fusion scenario. The estimates presented here were developed based on systems with more than one measurement equation. Numerical examples are presented to verify the effectiveness of proposed algorithms.
Downloads
Metrics
References
[1] O. L. do V. Costa, “Linear minimum mean square error estimation for discrete-time Markovian jump linear systems,” IEEE Transactions on Automatic Control, vol. 39, no. 8, pp. 1685 - 1689, 1994. https://doi.org/10.1109/9.310052
[2] O. L. V. Costa and S. Guerra, “Stationary Filter for Linear Minimum Mean Square Error Estimation for Discrete-Time Markovian Jump Linear Systems,” IEEE Transactions on Automatic Control, 47, 1351 - 1356, 2002. https://doi.org/10.1109/tac.2002.800745
[3] M. S. Mahmoud, P. Shi, A. Ismail, “Robust Kalman filtering for discrete-time Markovian jump systems with parameter uncertainty,” Journal of computational and applied mathematics, vol. 169, no. 1, pp. 53 - 69, 2004. https://doi.org/10.1016/j.cam.2003.11.002
[4] Z. Wang, J. Lam, X. Liu, “Robust filtering for discrete-time Markovian jump delay systems,” IEEE Signal Processing Letters, vol. 11, no. 8 pp. 659 - 662, 2004. https://doi.org/10.1109/lsp.2004.831729
[5] L. Zhang, “H ∞ estimation for discrete-time piecewise homogeneous Markov jump linear systems,” Automatica, vol. 45, no. 11, pp. 2570 - 2576, 2009. https://doi.org/10.1016/j.automatica.2009.07.004
[6] A. P. C. Gonçalves, A. R. Fioravanti and J. C. Geromel, “Markov jump linear systems and filtering through network transmitted measurements,” Signal Processing, 90, 2842 - 2850, 2010. https://doi.org/10.1016/j.sigpro.2010.04.007
[7] Q. Sun, C.-C. Lim, P. Shi, F. Liu, “Design and stability of moving horizon estimator for Markov jump linear systems,” IEEE Transactions on Automatic Control, vol. 64, no. 3 pp. 1109 - 1124, 2018. https://doi.org/10.1109/tac.2018.2816102
[8] L. Wang, X. Gao, S. Cai, X. Xiong, “Robust Finite-Time H ∞ Filtering for Uncertain Discrete-Time Nonhomogeneous Markovian Jump Systems,” IEEE Access, vol. 6, pp. 52561 - 52569, 2018. https://doi.org/10.1109/access.2018.2870565
[9] S. H. Kim, “Robust H ∞ filtering of discrete-time nonhomogeneous Markovian jump systems with dual-layer operation modes,” Journal of the Franklin Institute, vol. 356, no. 1, pp. 697 - 717, 2019. https://doi.org/10.1016/j.jfranklin.2018.11.004
[10] Z. Zhou, X. Luan, F. Liu, “High-Order Moment Recursive State Estimation of Markov Jump Linear Systems,” IEEE Access, vol. 6, pp. 70788 - 70793, 2018. https://doi.org/10.1109/access.2018.2881281
[11] Y. Yang, Y. Qin, Q. Pan, Y. Yang, Z. Li, “Recursive linear optimal filter for Markovian jump linear systems with multi-step correlated noises and multiplicative random parameters,” International Journal of Systems Science, vol. 50, no. 4, pp. 749 - 763, 2019. https://doi.org/10.1080/00207721.2019.1568607
[12] M. H. Terra, J. Ishihara, G. Jesus and J. P. Cerri, “Robust estimation for discrete-time Markovian jump linear systems,” IEEE Transactions on Automatic Control, 58, 2065 - 2071, 2013. https://doi.org/10.1109/tac.2013.2246475
[13] I. Matei and J. S. Baras, “A linear distributed filter inspired by the Markovian jump linear system filtering problem,” Automatica, 48, 1924 - 1928, 2012. https://doi.org/10.1016/j.automatica.2012.05.028
[14] J. Liang, Z. Wang, X. Liu, “Distributed state estimation for uncertain Markov-type sensor networks with mode-dependent distributed delays,” International Journal of Robust and Nonlinear Control, vol. 22, no. 3, pp. 331 - 346, 2012. https://doi.org/10.1002/rnc.1699
[15] Y. Gao, X. R. Li, Z. Duan, “Estimation fusion for Markovian jump linear system via data transformation,” IEEE Transactions on Aerospace and Electronic Systems, vol. 50, no. 1, pp. 240 - 253, 2014. https://doi.org/10.1109/taes.2013.110740
[16] Y. Yang, Y. Liang, Q. Pan, Y. Qin, F. Yang, “Distributed fusion estimation with square-root array implementation for Markovian jump linear systems with random parameter matrices and cross-correlated noises,” Information Sciences, vol. 370, pp. 446 - 462, 2016. https://doi.org/10.1016/j.ins.2016.08.020
[17] W. Li, Y. Jia, “Distributed estimation for Markov jump systems via diffusion strategies,” IEEE Transactions on Aerospace and Electronic Systems, vol. 53, no. 1, pp. 448 - 460, 2017. https://doi.org/10.1109/taes.2017.2650801
[18] H. Geng, Z. Wang, Y. Liang, Y. Cheng, F. E. Alsaadi, “State estimation for asynchronous sensor systems with Markov jumps and multiplicative noises,” Information Sciences, vol. 417, pp. 1 - 19, 2017. https://doi.org/10.1016/j.ins.2017.07.001
[19] A. H. Sayed, T. Y. Al-Naffouri and T. Kailath, “Robust Estimation for Uncertain Models in a Data Fusion Scenario,” System Identification, 3, 899 - 904, 2000. https://doi.org/10.1016/s1474-6670(17)39867-1
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional