Minimization of the sum of squares of distances to vertices in convex polygons
DOI:
https://doi.org/10.22481/intermaths.v3i2.11309Keywords:
Center of Mass, Centroid, Baricenter, Two variable functionsAbstract
The minimization of the sum of squares of the distances between a point P and the vertices of a convex polygon, weighted by non-negative constants is discussed in this article. Initially, the minimization process is applied to non-degenerated triangles, and then a discrete set of points forming a convex polygon is analyzed. In both cases, the analytical results, using Differential Calculus, are presented in detail together with graphical representations of the respective solutions by means of the software GeoGebra. These, in turn, use dynamic color features and make it possible to visualize and explore geometric results and illustrate the minimum points.
Downloads
Metrics
References
Palacios-Vélez, Ó.L., Pedraza-Oropeza, F.J.A., Escobar-Villagran, B. S., An algebraic approach to finding the Fermat–Torricelli point, International Journal of Mathematical Education in Science and Technology, v. 46, n. 8, p.1252-1259, 2015.
DOI:10.1080/0020739X.2015.1036947.
Dos Santos, J. P. M., Firmiano, A., López Linares, J., O. Ramalho, M. P. Diferentes perspectivas de um problema de otimização: Matemática Dinâmica com GeoGebra. Intermaths, 3(1), 70-87, 2022. DOI: https://doi.org/10.22481/intermaths.v3i1.10227
Andreescu, T., Mushkarov, O., Stoyanov, L., Geometric Problems on Maxima and Minima, Birkhauser, 2006.
Losada, R., El color dinâmico de GeoGebra, La Gaceta de la RSME, v. 17, n. 3, p. 525-547, 2014.
Alves, S., O centro de massa de um triângulo. Revista do Professor de Matemática-RPM, v.71. Disponível em https://rpm.org.br/cdrpm/71/9.html. Acesso em agos. 2022.
López Linares, J., Santos, J.P.M., Firmiano, A., Baricentro ou centroide: cinco problemas resolvidos das listas da Olimpíada Internacional de Matemática, Revista de Matemática -RMAT, v.2 pp:47-69, 2021.
Weisstein, E.W., Triangle Centroid. From MathWorld–A Wolfram Web Resource. Disponível em: https://mathworld.wolfram.com/TriangleCentroid.html. Acesso em agos. 2022.
López Linares, J. Construções passo a passo de Geometria Olímpica, Disponível em: https://www.geogebra.org/m/vsfydv2v#material/qvyhjwtr. Acessado em 08 agos. 2022.
Carneiro, E. Girão, F., Centro de Massa e Aplicações à Geometria, Revista EUREKA!, n. 21, pp:39-34, 2005. Disponível em:
https://www.obm.org.br/content/uploads/2017/01/eureka21.pdf. Acesso em agos. 2005.
Awrejcewicz, J. (2012). Geometry of Masses. In: Classical Mechanics. Advances in Mechanics and Mathematics, vol 28. Springer, New York, NY. DOI: https://doi.org/10.1007/978-1-4614-3791-8_3
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 INTERMATHS

This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional