SIR model for propagation of COVID-19 in the Paraíba's State (Brazil)

Authors

DOI:

https://doi.org/10.22481/intermaths.v2i2.9696

Keywords:

Mathematical modelling, Epidemiology, Covid-19

Abstract

This work aims to apply the SIR-type compartmental model (Susceptible - Infected - Removed) in the evolution of Covid-19 in Paraíba's State and Campina Grande City. For that, the parameters of the model were considered to be variable during time evolution, within an appropriate range. The system of differential equations was solved numerically using the Euler method. The parameters were obtained by adjusting the model to the infected data provided by the Paraíba Health Department. According to the results obtained, the model describes the infected population well. There was a reduction in the effective reproduction number in Paraíba and the town of Campina Grande. It is noteworthy that understanding the dynamics of infection transmission and evaluating the effectiveness of control measures is crucial to assess the potential for sustained transmission to occur in new areas. The model can also be applied to describe epidemic dynamics in other regions and countries. 

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Author Biographies

Célia Maria Rufino Franco, Unidade Acadêmica de Física e Matemática do Centro de Educação e Saúde, Universidade Federal de Campina Grande, Cuité-PB, Brasil

Professora Adjunto IV da Universidade Federal de Campina Grande, lotada na Unidade Acadêmica de Física e Matemática (UAFM) do Centro de Educação e Saúde (CES), Cuité -PB, Brasil. Mestre em Matemática pela UFPB e Doutora em Engenharia de Processos pela UFCG.

Renato Ferreira Dutra, Instituto de Física, Universidade Federal de Alagoas, Maceió, AL, Brasil

Graduado em Licenciatura em Física pela Universidade Federal de Campina Grande (UFCG). Mestre em Física pela Universidade Federal do Rio Grande do Norte (UFRN). Atualmente é aluno de doutorado no Instituto de Física da Universidade Federal deAlagoas (UFAL).

References

M. Patrão and M. Reis, “Analisando a pandemia de COVID-19 através dos modelos SIR e SECIAR”, Biomatemática, vol. 30, pp. 111–140, 2020.

C. M. R. Franco and R. F. Dutra, “Modelos matemáticos em epidemiologia e aplicação na evolução da covid-19 no brasil e no estado da paraíba”, Educação, Ciência e Saúde, vol. 7, no. 1, 2020. http://dx.doi.org/10.20438/ecs.v7i1.269

M. H. R. Luiz, “Modelos matemáticos em epidemiologia”, Master’s Dissertation, Matemática, Universidade Estadual Paulista, Rio Claro, 2012.

D. I. C. Rocha, “Modelos matemáticos aplicados á epidemiologia”, Master’s Dissertation, Matemática e Informática, Universidade do Porto, Porto, 2012.

P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang and others, “A pneumonia outbreak associated with a new coronavirus of probable bat origin”, Nature, vol. 579, no. 7798, pp. 270–273, 2020. https://doi.org/10.1038/s41586-020-2012-7

F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei and others, “A new coronavirus associated with human respiratory disease in china”, Nature, vol. 579, no. 7798, pp. 265–269, 2020. https://doi.org/10.1038/s41586-020-2008-3

M. Kermark and A. Mckendrick, “Contributions to the mathematical theory of epidemics. part i”, Proceedings of the Royal Society of London. Series A, vol. 115, no. 5, pp. 700–721, 1927. https://doi.org/10.1098/rspa.1927.0118

W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics. ii.-The problem of endemicity”, Proceedings of the Royal Society of London. Series A, vol. 138, no. 834, pp. 55–83, 1932. https://doi.org/10.1098/rspa.1932.0171

W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics. iii.-Further studies of the problem of endemicity”, Proceedings of the Royal Society of London. Series A, vol. 141, no. 843, pp. 94–122, 1933. https://doi.org/10.1098/rspa.1933.0106

G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri, “Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy”, Nature medicine, vol. 26, no. 6, pp. 855–860, 2020. https://doi.org/10.1038/s41591-020-0883-7

F. G. Manrique-Abril, C. A. Agudelo-Calderon, V. M. González-Chordá, O. Gutiérrez-Lesmes, C. F. Téllez-Piñerez, and G. Herrera-Amaya, “Sir model of the covid-19 pandemic in Colombia”, Revista de Salud Pública, vol. 22, no. 1, 2020. https://doi.org/10.15446/rsap.V22.85977

I. F. F. dos Santos, G. A. Almeida, and F. A. B. F. de Moura, “Adaptive SIR model for propagation of SARS-CoV-2 in brazil”, Physica A: Statistical Mechanics and its Applications, vol. 569, 2021. https://doi.org/10.1016/j.physa.2021.125773

W. M. de Souza, L. F. Buss, D. da Silva Candido, J.-P. Carrera, S. Li, A. E. Zarebski, R. H. M. Pereira, C. A. Prete, A. A. de Souza-Santos, K. V. Parag, and others, “Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil”, Nature human behaviour, vol. 4, no. 8, pp. 856–865, 2020. https://doi.org/10.1038/s41562-020-0928-4

Q. Shi, Y. Hu, B. Peng, X.-J. Tang, W. Wang, K. Su, C. Luo, B. Wu, F. Zhang, Y. Zhang, and others, “Effective control of SARS-CoV-2 transmission in Wanzhou, China”, Nature medicine, vol. 27, no. 1, pp. 86–93, 2021. https://doi.org/10.1038/s41591-020-01178-5

A. de A. Batista and S. H. da Silva, “Um modelo epidemiológico tipo SIR aplicado à dinâmica de disseminação da COVID-19 no Brasil, na Paraíba e em Campina Grande”, preprint, 2020. http://dx.doi.org/10.13140/RG.2.2.26557.69600

“Secretaria de Saúde da Paraíba”, webpage =https://paraiba.pb.gov.br/diretas/saude/coronavirus.

R. C. Bassanezi and W. C. F. Junior, Equações Diferenciais: com aplicações, São Paulo: HARBRA ltda, 1988.

M. W. Hirsch, S. Smale and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Academic press, 3rd ed., 2013.

Downloads

Published

2021-12-28

How to Cite

Franco, C. M. R., & Dutra, R. F. . (2021). SIR model for propagation of COVID-19 in the Paraíba’s State (Brazil). INTERMATHS, 2(2), 39-48. https://doi.org/10.22481/intermaths.v2i2.9696

Issue

Section

Artigos