SIR model for propagation of COVID-19 in the Paraíba's State (Brazil)
DOI:
https://doi.org/10.22481/intermaths.v2i2.9696Keywords:
Mathematical modelling, Epidemiology, Covid-19Abstract
This work aims to apply the SIR-type compartmental model (Susceptible - Infected - Removed) in the evolution of Covid-19 in Paraíba's State and Campina Grande City. For that, the parameters of the model were considered to be variable during time evolution, within an appropriate range. The system of differential equations was solved numerically using the Euler method. The parameters were obtained by adjusting the model to the infected data provided by the Paraíba Health Department. According to the results obtained, the model describes the infected population well. There was a reduction in the effective reproduction number in Paraíba and the town of Campina Grande. It is noteworthy that understanding the dynamics of infection transmission and evaluating the effectiveness of control measures is crucial to assess the potential for sustained transmission to occur in new areas. The model can also be applied to describe epidemic dynamics in other regions and countries.
Downloads
Metrics
References
M. Patrão and M. Reis, “Analisando a pandemia de COVID-19 através dos modelos SIR e SECIAR”, Biomatemática, vol. 30, pp. 111–140, 2020.
C. M. R. Franco and R. F. Dutra, “Modelos matemáticos em epidemiologia e aplicação na evolução da covid-19 no brasil e no estado da paraíba”, Educação, Ciência e Saúde, vol. 7, no. 1, 2020. http://dx.doi.org/10.20438/ecs.v7i1.269
M. H. R. Luiz, “Modelos matemáticos em epidemiologia”, Master’s Dissertation, Matemática, Universidade Estadual Paulista, Rio Claro, 2012.
D. I. C. Rocha, “Modelos matemáticos aplicados á epidemiologia”, Master’s Dissertation, Matemática e Informática, Universidade do Porto, Porto, 2012.
P. Zhou, X.-L. Yang, X.-G. Wang, B. Hu, L. Zhang, W. Zhang, H.-R. Si, Y. Zhu, B. Li, C.-L. Huang and others, “A pneumonia outbreak associated with a new coronavirus of probable bat origin”, Nature, vol. 579, no. 7798, pp. 270–273, 2020. https://doi.org/10.1038/s41586-020-2012-7
F. Wu, S. Zhao, B. Yu, Y.-M. Chen, W. Wang, Z.-G. Song, Y. Hu, Z.-W. Tao, J.-H. Tian, Y.-Y. Pei and others, “A new coronavirus associated with human respiratory disease in china”, Nature, vol. 579, no. 7798, pp. 265–269, 2020. https://doi.org/10.1038/s41586-020-2008-3
M. Kermark and A. Mckendrick, “Contributions to the mathematical theory of epidemics. part i”, Proceedings of the Royal Society of London. Series A, vol. 115, no. 5, pp. 700–721, 1927. https://doi.org/10.1098/rspa.1927.0118
W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics. ii.-The problem of endemicity”, Proceedings of the Royal Society of London. Series A, vol. 138, no. 834, pp. 55–83, 1932. https://doi.org/10.1098/rspa.1932.0171
W. O. Kermack and A. G. McKendrick, “Contributions to the mathematical theory of epidemics. iii.-Further studies of the problem of endemicity”, Proceedings of the Royal Society of London. Series A, vol. 141, no. 843, pp. 94–122, 1933. https://doi.org/10.1098/rspa.1933.0106
G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri, “Modelling the covid-19 epidemic and implementation of population-wide interventions in Italy”, Nature medicine, vol. 26, no. 6, pp. 855–860, 2020. https://doi.org/10.1038/s41591-020-0883-7
F. G. Manrique-Abril, C. A. Agudelo-Calderon, V. M. González-Chordá, O. Gutiérrez-Lesmes, C. F. Téllez-Piñerez, and G. Herrera-Amaya, “Sir model of the covid-19 pandemic in Colombia”, Revista de Salud Pública, vol. 22, no. 1, 2020. https://doi.org/10.15446/rsap.V22.85977
I. F. F. dos Santos, G. A. Almeida, and F. A. B. F. de Moura, “Adaptive SIR model for propagation of SARS-CoV-2 in brazil”, Physica A: Statistical Mechanics and its Applications, vol. 569, 2021. https://doi.org/10.1016/j.physa.2021.125773
W. M. de Souza, L. F. Buss, D. da Silva Candido, J.-P. Carrera, S. Li, A. E. Zarebski, R. H. M. Pereira, C. A. Prete, A. A. de Souza-Santos, K. V. Parag, and others, “Epidemiological and clinical characteristics of the COVID-19 epidemic in Brazil”, Nature human behaviour, vol. 4, no. 8, pp. 856–865, 2020. https://doi.org/10.1038/s41562-020-0928-4
Q. Shi, Y. Hu, B. Peng, X.-J. Tang, W. Wang, K. Su, C. Luo, B. Wu, F. Zhang, Y. Zhang, and others, “Effective control of SARS-CoV-2 transmission in Wanzhou, China”, Nature medicine, vol. 27, no. 1, pp. 86–93, 2021. https://doi.org/10.1038/s41591-020-01178-5
A. de A. Batista and S. H. da Silva, “Um modelo epidemiológico tipo SIR aplicado à dinâmica de disseminação da COVID-19 no Brasil, na Paraíba e em Campina Grande”, preprint, 2020. http://dx.doi.org/10.13140/RG.2.2.26557.69600
“Secretaria de Saúde da Paraíba”, webpage =https://paraiba.pb.gov.br/diretas/saude/coronavirus.
R. C. Bassanezi and W. C. F. Junior, Equações Diferenciais: com aplicações, São Paulo: HARBRA ltda, 1988.
M. W. Hirsch, S. Smale and R. L. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Academic press, 3rd ed., 2013.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 INTERMATHS
This work is licensed under a Creative Commons Attribution 4.0 International License.
- Responsibility: The scientific content and the opinions expressed in the manuscript are the sole responsibility of the author(s).
- Copyrights: INTERMATHS.
- All content of Revista INTERMATHS/INTERMATHS journal is licensed under a Creative Commons - Atribuição 4.0 Internacional